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ABSTRACT

This work focuses on the theoretical study of the electrostatic interaction
between charged rigid macromolecules and lipid membranes. Many biologically
relevant molecules and molecular aggregates carry charge, ranging from proteins,
polynucleotides (e.g., DNA) to lipid membranes. The interaction between these
macromolecules enables many processes inside living cells and organisms to be
carried out. These include protein-DNA binding, the adsorption of peripheral
proteins onto cell membranes and condensation of DNA in cell nuclei or viral
capsids. The complex nature of these systems stems from the large number of
relevant degrees of freedom.

As an introduction, we discuss in Chapter 1 the essential molecular compo-
nents of the macromolecular, multi-component, complex systems considered later.
First, electrolyte solutions are discussed together with the mean-field (“Poisson-
Boltzmann”) theoretical approach, used to deal with them throughout this work.
Then, we present a short overview of the macromolecules that are studied later
in this work. These include lipid aggregates, DNA and proteins. We also present
some of their physical properties.

We next turn to study the DNA-lipid interaction in ordered composite phases
that are spontaneously formed in aqueous solutions upon mixing DNA and mixed
cationic and neutral (“helper”) lipid vesicles. It has previously been found that
these complexes may serve as efficient vectors for gene delivery into living cells.
Substantial experimental effort has been made to characterize these phases, in
the hope that they might serve in gene therapy. In chapters 2 and 3 we present a
general statistical thermodynamic formulation that we have developed to account
for the relative stability of various competing structures of complexes formed by
DNA and mixed membranes. Chapter 2 deals with one specific ordered com-
plex, whos structure has been accurately determined experimentally. This is the
lamellar LS phase, that may form when mixing lipids that tend to form planar
membranes and DNA in an aqueous solution. Our model includes the electro-
static degrees of freedom, taking into account the mixing (and demixing) of the
mobile salt ions, as well as the charged and uncharged lipids in the (mixed)
membrane.

An important achievement presented in this work is devising and subsequently
solving numerically the appropriate free energy functional, leading to a modified
Poisson-Boltzmann (PB) equation with special boundary conditions, taking into
account the possibility of charged lipids to demix in the presence of a charged
macroion. We thus show the importance of lipid demixing in the vicinity of
oppositely charged DNA, tending towards charge matching. Qualitative and

quantitative predictions are presented concerning importance of the charge mod-
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ulations in the lamellar complexes in determining the structure and stability of

the condensed phase.

Underlying the association of DNA and cationic membranes and the stability
of the complexes formed, is the entropy gain associated with the release of the
partially bound counterions from the vicinity of the macromolecules into the
bulk solution. The extent of this “counterion release” was determined directly
by conductivity measurements, and in parallel, was calculated by us based on
PB theory. The model calculations agree well with experiment revealing, for
instance, that maximal (essentially) complete release of counterions takes place
at the isoelectric point, i.e., when the fixed negative (DNA) and positive (cationic
lipid) charges in the complex are equal. At this point the complex formation free

energy is nearly purely entropic, i.e., entirely due to counterion release.

Using the same model, the experimentally observed phase behavior of the
system is also accounted for. A simple analytical model is presented, reconfirming

many of the important results of the more complex model.

In Chapter 3, we add the contribution of membrane elasticity, another impor-
tant degree of freedom, to the electrostatic and mixing free energy contributions.
Thus, yet more complex and rich phase behavior is accounted for. One exam-
ple is the experimentally observed formation of the hexagonal Hf phase upon
softening of the lipid membrane involved in forming the LS complex. Several
phase diagrams are presented, differing in the spontaneous curvature and bend-
ing moduli of the constituent layers. The principles governing the formation of
the different phases are elucidated. We also show how all the relevant degrees of
freedom (electrostatic, mixing and elasticity) could all be combined and solved
self-consistently in one free energy functional. Consequently, we find that the
lipid layers in the LS complexes may bend around the DNA “rods” in order to
achieve better electrostatic matching. This, we suggest, may explain the registry

between DNA monolayers in different “galleries” in the lamellar complex.

In Chapter 4, we turn to discuss the way charged peripheral proteins, another
class of rigid macromolecules, interact with lipid membranes. The coverage de-
pendent adsorption free energy is determined, again including electrostatic and
mixing contributions to the free energy. The importance of these degrees of free-
dom, as well as the electrostatic interaction between adsorbed proteins is demon-
strated through the adsorption isotherms. Some common principles to the ones
discussed in chapters 2 and 3 emerge here: the tendency towards charge match-
ing on the membrane and protein, and the consequent membrane polarization.
We find that the lipid mobility influences the binding free energy and adsorp-
tion isotherms most substantially when the charge density on the membrane is

much lower than that on the protein (which is the biologically most relevant
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case). We also show how membrane charges are typically over compensated by
protein-charges. Finally, we argue that lipid-protein domains may be enhanced
by non-ideal lipid mixing contributions.

Chapter 5 concludes with a short summary.
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Chapter 1

Introduction

1.1 Prelude

This dissertation is concerned with the theoretical study of the electrostatic in-
teraction between charged biological macromolecules. Charge is carried by many
such molecules ranging from proteins and polynucleotides (e.g., DNA) to lipid
membranes. The interaction between these macromolecules are at the base of
many biological processes, such as protein-DNA binding, the adsorption of pe-
ripheral proteins onto cell membranes and the condensation of DNA in cell nuclei

or viral capsids.

More specifically, we shall consider systems where one of the interacting
“macromolecules” is a charged lipid membrane, while the other is a rigid macro-
molecule such as DNA or protein. A lipid membrane, strictly speaking, is a
molecular aggregate or colloid. However, it is often useful to consider it as a
macro-body or macromolecule, since its integrity is generally kept even when in-
teracting with other macromolecules. Albeit, lipid aggregates bear some unique
features that are absent from other, more generic, macromolecules or colloids.
Perhaps most important is the fact that the lipid membrane is fluid. Therefore,
e.g., a mixed membrane, composed of charged and uncharged lipids, may be
regarded as a two dimensional fluid mixture. Consequently, it may respond to
the presence of another (charged) macromolecule by locally varying its chemical
composition, hence modulating its surface charge density (polarization). Further-
more, being elastic with respect to curvature and area deformations, the mem-
brane may undergo, e.g., curvature modulations in the vicinity of the interacting

macromolecule.
Two particular types of systems will be in the lime light. In the first, an

overall positively charged lipid membrane interacts with (negatively charged)
DNA. This will be the focus of Chap.2 and Chap.3. Upon the interaction of these
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two macromolecules, ordered composite phases are spontaneously formed. These
complexes have attracted a large volume of interest, due to their potential of being
vectors for gene delivery, as a first stage in gene transfection, in the design of gene
therapeutics. In the second, a globular, overall (positively) charged, peripheral
protein interacts with a (negatively) charged membrane. The importance of the
interaction of peripheral proteins with lipid biological cell membranes can not be
over stressed, since this type of interaction is the first stage of many trafficking
and signaling processes across such membranes. This will be the topic of Chap.4.
Further complexity is added to these systems due to the the fact that these
charged macromolecules are always accompanied by their small counterions, and
are generally found in aqueous solutions where salt is also present in fair amounts

(e.g. the human serum has a salt concentration of ~ 0.1M).

A first glance at these systems of interacting particles display almost ominous
complexity. How can we set about understanding systems with so many degrees of
freedom? A closer look reveals that, as in assembling a jigsaw puzzle, a knowledge
of the properties of the individual building blocks aids in forming the complete
picture. Imagine a musical instrument performing as part of a symphonic or-
chestra: it is part of a highly complex, music generating, system. Even so, each
instrument keeps its special sound and quality even when playing in concert.
Similarly, the basic characteristics of each component (molecule) in the system
is not generally lost even when interacting with other components. For example,
DNA interacting with membranes will still possess its stiffness and propensity
to form ordered, liquid crystalline phases, while the membrane will tend to form
lyotropic phases reminiscent of the ones it would form in the absence of DNA.
What remains, is to understand the reciprocity between the different components,
and how it effects the resulting phases that are observed. The lipid membrane
can be regarded as a scaffolding for the assembly of DNA, while DNA may be
regarded as a non-homogeneous field to which the membrane lipids (charged and
uncharged) responds. Based on our (prior) knowledge of the individual compo-
nents, we are in search of a theoretical model that will account, self-consistently,
for the most important degrees of freedom in the combined interacting system
and the important coupling between these degrees of freedom. That is the aim

of this work.

Understanding some of these underlying principles, and the ability to predict
the outcome of the self-assembly in these systems of interacting macromolecules,
should give a possible starting point for the design of synthetic, biologically non-
occurring materials, such as drugs relaying on proteinomimetic strategies (see e.g.
Kasher et al. (1999) and references therein) or lipid-based potential gene delivery
agents in gene therapy. Although this field is in its early stages, and many of
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the mechanisms and interactions are not yet fully understood, the uncovered
potential is well appreciated.

We therefore start with describing the basic components in the complex sys-
tems considered later. We first discuss electrolyte solutions and the mean-field
(“Poisson-Boltzmann”) theoretical approach, used to deal with them throughout
this work. Then, we present a short overview of the macromolecules that are
studied later in this work (namely: Lipids aggregates, DNA and proteins) and
their physical properties, will be given. The intent is not to give any kind of
comprehensive review of the wealth of knowledge concerning these topics, but

rather to serve as an introductory basis for the later chapters.

1.2 Electrolyte solutions

Aqueous electrolyte solution are all around us: a simple glass of tap water already
contains many ions. Even when completely purified or distilled, water always
contains ions that originate in the dissociation of water itself: H,O = H* + OH™,
a reaction which has an equilibrium constant of K, = [H*][OH™] = 10~"“M?. If
only electrostatic forces are considered, one would expect such solutions to be
unstable. The ions should either collapse into a crystal (if the solution is neutral),
or otherwise repel each other and “explode” (Landau & Lifshitz, 1960). In fact,
the enthalpy of solvation of most common univalent salts from the solid crystal
state is slightly positive (on the order of 10 KJmole™!). It is the translational
entropy which opposes the electrostatic attraction and keeps the ions in solution
from collapsing. The excluded volume of the ions also contributes to the repulsion
between ions, but is often negligible compared to the other two contributions.
Water is a good solvent for salts, because its high dielectric constant renders
the solvation enthalpy only slightly positive, while the enthalpy is much larger
for solvation in low dielectric solvents. This allows the entropy to dominate and
enable solvation (up to the level of saturation).

It has been shown that such simple considerations are sufficient in explaining
the existence of a (first order) phase transition which is experimentally observed
in salt solutions. In fact the theoretical treatment of the transition between an
electrolyte-dilute to an electrolyte-dense phase goes back to Debye and Hiickel
(Debye & Hiickel, 1923; Debye & Hiickel, 1924). Since that time more experimen-
tal evidence and theoretical work has revealed that these systems of electrolytes
possess special peculiarities (Fisher & Levin, 1993; Fisher, 1994; McGahay &
M.Tomozawa, 1989; Weingértner et al., 1992; Japas & Sengers, 1990). These are
mainly due to the long range nature of the electrostatic potential. It has long

been known that it is impossible to use some of the standard tools of statistical



INTRODUCTION

mechanics in combating electrolyte solutions. For instance, it is impossible to
derive a virial expansion even for very dilute electrolyte solutions (Hill, 1960).
Moreover, the properties of electrolyte solutions seem to possess mean field-like
critical exponents while defying the results based on renormalization-group the-
ory, which yield Ising-like critical exponents. This behavior has been attributed
to the fact that fluctuation-neglecting mean-field theory is appropriate in describ-
ing systems in which the range of interaction is greater than the range dominated
by fluctuations. It was found that electrolyte solutions may have a lower and up-
per consulate points such that there is a transition between Ising-like (fluctuation
dominated) and mean field-like (long range potential) behaviors (Fisher & Levin,
1993).

The theoretical treatment of electrolyte solutions and of macromolecules in
salt solutions goes back to the early years of the 20th century with the work
of Debye and Hiickel (1923) and Gouy and Chapman (Gouy, 1910; Chapman,
1913), and continued with the celebrated work of Verwey and Overbeek (1948). A
charged isolated (dry) macromolecule is always accompanied by its counterions, so
that it is electrostatically neutral. Once solvated in water, the mobile counterions,
as well as any other ions present in solution, have a choice: they can either
bind to the macroion and gain electrostatic energy, or else diffuse into solution
thus gaining translational entropy. At equilibrium compromise is achieved, the
density of counterions remaining close to the macroion being determined by its
charge density, shape and the salt concentration in solution. These ideas are
incorporated in the Derjaguin-Landau-Verwey-Overbeek (DLVO) model, which
assumes that the electrostatic double layer formed near charged surfaces, together
with another important class of forces, the van der Waals interactions, govern
colloid stability (Verwey & Overbeek, 1948; Derjaguin et al., 1987; Evans &
Wennerstrom, 1994).

Next we present one particular mean-field-based theoretical approach for de-
termining the ion density (hence the free energy) in a solution containing charged
macromolecules or colloids. This approach will be used throughout this work to
obtain self consistent solutions for the distribution of ions in and around special

macromolecular assemblies.

1.2.1 Mean field variational approach

Consider an aqueous solution of volume V', containing 1:1 electrolyte at a tem-
perature T. Each pair of ions, seperated by a distance r in the solution, each
with an elementray charge +e, interact via a Coulomb interaction of magnitude

e? /4mer (within mks convention, and with a negative sign for an anion interacting
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with a cation - positive otherwise); € = €¢,, and ¢, is the dielectric constant of
the solution (for water we shall assume ¢, = 78), while ¢, is the permittivity of
vacuum. This volume is in contact with a bulk solution of (similar) positive and
negative ions, each at a concentration ng. The electrostatic cumulative potential
emanating from these ions, and any other stationary charged object in solution
(such as large macromolecules) at a point 7 is ¢(7). The local concentrations
of positive and negative mobile ions (denoted by n, () and n_(7) respectively)
depend on ¢, and should be found self-consistently. The mobile ions move in the
field they themselves are affecting, so as to minimize the system free energy.

Using a mean field approach, neglecting all correlation between mobile ions,
the charging free energy functional of the system for any particular choice of the
distribution ny is:

[n+ln2—z+nln2—;—(n++n+2ng) dv

Flne,n ong,n )] = kBT/
v

+ /V %(V@)Z dv
(1.1)

The first term on the right-hand side of this equation accounts for the transla-
tional (“mixing”) entropy of the mobile ions in the volume V', relative to their
entropy in the bulk solution, with n, = n_ = ny. The second term is the
electrostatic energy (in the mks convention) (Verwey & Overbeek, 1948); kp is
Boltzmann’s constant.

Taking the first variation of F with respect to ny and n_, yields for the
distribution of mobile ions the usual Boltzmann distribution, ny = ngexp(Fv),
where 1) = ep/kpT is the scaled dimensionless electrostatic potential and e is
the elementary charge. Upon substitution into Poisson’s equation the non-linear

“Poisson Boltzmann” (PB) equation is derived,
V%) = k? sinh ¢ (1.2)

where k™' = (e, kT /2npe?)'/? = Ip is the Debye length.! This differential
equation must then be solved with appropriate boundary conditions.

Using this approach it is also possible to obtain modified PB equations with
special boundary conditions. This is done by constructing an appropriate func-
tional F, and deriving the free energy variationally from it. For a detailed discus-

sion of this approach and some applications see (Levine, 1939; Reiner & Radke,

!The Debye length can be considered as the screening length of an electrolyte solution
of concentration ng. A result of the linearized version of the PB equation (valid when the
potential ¢ is small throughout the solution) is that the maximal density (“ionic atmosphere”)

of counterions is situated at a distance [p from any central ion.
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1990; Honig & Nicholls, 1995; Borukhov et al., 1995; Borukhov et al., 1997; Fo-
golari & Briggs, 1997) and references therein. The proof that the free energy for
the system is indeed derived from a variation of F, is a subtle point also discussed
in the above references.

We will utilize this approach when we consider macromolecular assemblies of
DNA and lipids, and also when addressing the adsorption of proteins on lipid
membranes. We will thus be able to include additional terms to the free energy,
such as membrane curvature and lipid translational entropy, in a self consistent

manner.

Shortcomings of PB theory

The limitations of PB (mean-field) theory stem from its primary simplifying
neglect of mobile ion correlations. When these become important, the theory may
give quantitatively, as well as qualitatively, wrong results. the validity of the PB
theory for treating the interaction between charged surfaces and colloidal particles
has been examined by various authors based on comparisons to either non-mean-
field (integral equation) or computer simulation studies ((Linse & Jonsson, 1982;
Wennerstrom et al., 1982; Das et al., 1995; Deserno et al., 2000); for reviews see
Andelman (1995) and Vlachy (1999)). The conclusion from these studies is that
PB theory is adequate for aqueous solutions containing monovalent electrolyte
for salt concentrations not exceeding ~ 0.1M, and surfaces bearing a potential
of only a few kT /e. The aqueous solutions considered in the present work fulfill
this condition.

An important case where counterion correlations must be taken into account
is when considering the attraction that is observed between macromolecules bar-
ing the same charge (see Sec. 1.4.4). PB theory always predicts repulsion between
such charged objects (Neu, 1999; Sader & Chan, 1999b; Sader & Chan, 1999a;
Langmuir, 1938; Harries, 1998; Stankovich & Carnie, 1996; Ohnishi et al., 1960).
It will therefore inevitably fail to reproduce this attractive force. It is also clear
that when dealing with polyvalent salt ions in solution or with ions with large
excluded volume (or dense solutions) correlations are expected to play an im-
portant role, and special care should be taken in dealing (theoretically) with
these (Borukhov et al., 1997; Borukhov, 1999).

1.2.2 Alternative approaches

When PB theory is inadequate in dealing with electrolyte solutions, there are al-
ternative theoretical tools for combating the systems. Using the integral equation

approach, some intrinsically non mean-field phenomena were reproduced. These
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include the attraction between two charged colloidal particles (see e.g., (Sdnches-Sanches
& Lozada-Cassou, 1992; Marcelja, 1992) and cited references), and an apparent
“charge inversion” of charged surfaces, due to an excess of accumulated ions close

to the surface (Kékicheff et al., 1993; Greberg & Kjellander, 1998). The approach

has been compared with results from Monte-Carlo simulations and found to be
satisfactory in these cases (Greberg et al., 1997).

Recently another approach has been pursued by Netz and Orland (1999;
2000). In this approach, the Poisson-Boltzmann equation is obtained as the
saddle-point of the field-theoretic action, and the effects of counter-ion fluctua-
tions are included by a loop-wise expansion around this saddle point.

Another approach that has been utilized is computer simulations based on
Monte Carlo, Brownian Dynamics, or molecular dynamics. Such simulations
have been successful in predicting attractions between macroions (Lyubartsev &
Nordenskiold, 1995; Grgnbech-Jensen et al., 1997). The main difficulty with this
approach is that the long range of the electrostatic forces requires special methods
to account for the boundary conditions of the simulation cell, and for summing
over all interactions between ions ad infinitum.

Other combined approaches whereby the short range interaction between ions
are added to the PB free energy have also been used to account for the effect of
ion hydration on the potential around charged surfaces (Marcelja, 1997; Burak
& Andelman, 2000).

1.3 Lipids

1.3.1 Structure

Lipids are a set of biomolecules which are defined by biochemists as substances
that are insoluble in water and can be extracted from living cells by organic sol-
vents of low polarity. In fact, in this work, we shall only consider one type of
lipids: the fats or glycerides — carboxylic esters derived from glycerol (Morrison
& Boyd, 1992; Alberts et al., 1994). The fats, and in particular the phospho-
glycerids or phospholipids, are important, since they are a major constituent in
all biological membranes, separating and compartmentalizing their interior from
the outside world, and defining internal organelles inside cells, which have spe-
cific defined functions (Stryer, 1988). The phospholipids contain two acyl groups
(usually containing between 14 to 24 carbon atoms) connected to the glycerol
group. A third ester linkage is made to a phosphate group. The fatty acid chains
may be saturated or unsaturated. The configuration of the double bond in the

unsaturated chains is almost always cis. This has a marked effect on the packing
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Figure 1.1: Schematic illustration of four lipids: Positively charged DOTAP, neutral
(zwitterionic) DOPE and DOPC, and negatively charged DOPS. For DOTAP, a space
filling mode of one typical configuration is also shown.

of lipid chains in biological membranes, thus enabling control over the fluidity of

the membranes through changes in composition.

Phospholipids are amphiphilic in their nature, implying their dual propen-
sity: they all possess a hydrophilic (“water-loving”) “head” moiety, attached to a
hydrophobic (“water-dreading”) “tail” consisting of the fatty acid residues (Tan-
ford, 1980; Israelachvili, 1992). Structures of three such phospholipids of the type
mentioned later in this work, are shown in Fig. 1.1: DOPC (dioleoylphosphatidyl-
cholin), DOPE (dioleoylphosphatidylethanolamine) and DOPS (di oleoylphos-
phatidylserine).

All three share the same “tail” unit, but have very different headgroups that
are either negatively charged (DOPS) or zwitterionic (DOPC and DOPE). The
size of the “head” unit is also very different: larger in DOPC than in DOPE,
due to the presence of the bulky cholin group. Note however, that the van der
Waals excluded volume of the lipid headgroup alone is often misleading, since the
tight binding of water molecules from solution to the headgroup, or electrostatic

headgroup-headgroup repulsion, often enlarge its effective size significantly.

Many synthetic fats have also been devised, in a way that they share some
features with the naturally derived ones, but are also in some way unique. One
example is DOTAP (dioleoyltrimethylammonium propane), which possesses a

(naturally uncommon) positively charged headgroup.
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Figure 1.2: Tllustration of two lipid phases: the multilamellar, L,, phase and the
inverted hexagonal phase, Hyy. In both cases the lipids are a mixture of two species
differing in their headgroup properties.

1.3.2 Self-assembled phases

In aqueous solutions, lipid molecules tend to self-assemble into aggregates of a
well defined geometry. The hydrocarbon tails of the lipids huddle together to form
an oily bulk, while the hydrophilic headgroups tend to reside at the interface, in-
tervening between the chains and the engulfing water solution. The stability of
these aggregates is due to the (effective) attractive forces between hydrocarbon
tails that appear in order to minimize the unfavorable water-hydrocarbon inter-
facial area. This effective interaction is the “hydrophobic interaction”. Many
lipid packing geometries satisfy the hydrophobic effect. These range from blob-
like, roughly spherical micelles, through elongated micelles, lamellar lipid bilayers
(membranes) to inverted hexagonal structures. Fig. 1.2 schematically illustrates
two of the aggregation geometries which lead to formation of ordered phases. The
fluid lamellar (smectic-like) L, phase and the inverted hexagonal Hy; phase will
be referred to extensively in this work. The phases formed depend sensitively on
the lipid concentration in solution and are therefore classified as lyotrophic?.

It is often convenient to describe the shapes of the lipid aggregates in terms of
the two principal curvatures of the water—hydrocarbon interface, ¢; = 1/R; and
¢2 = 1/R,, and the interfacial surface area available to a lipid molecule, a. For
example, in a perfectly planar lipid bilayer, ¢; = ¢o = 0; for a spherical micelle,
¢1 = ¢3 = 1/R, where R is the radius of the hydrophobic blob. On the other hand,

for the inverted hexagonal structure of the Hy phase, ¢; = 0 while ¢ = —1/R;

2These are materials in which liquid crystalline properties appear induced by the presence

of a solvent, with mesophases depending on solvent concentration.
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Figure 1.3: Tllustration of a saddle-like geometry, for which ¢1ey < 0.

here R is the radius of the “water tubes”. We adopt here the convention that
surfaces that are curved away from the tail region possess a negative curvature.
For a saddle-like geometry, illustrated in Fig. 1.3, for which the two principle
cuvatures are oppositly curved, we find cyc < 0.

The geometry that the lipid phases will adopt in solution is dictated by the
balance of lateral forces (and torques) operating on a lipid molecule in the aggre-
gate. This in turn is intimately related to the chemical structure of the lipid and
also to the conditions in the embedding solution. Fig. 1.4 illustrates the different
contributing forces: in the headgroup region an overall repulsive interaction due
to a combination of steric (excluded volume), electrostatic, hydrational and possi-
bly (attractive) hydrogen-bonding, acting between headgroups, tend to increase
a. Acting against this tendency is the water—oil like interfacial tension, which
acts to minimize the exposure of the hydrocarbon aggregate interior to water.
The lipid tails inside the hydrophobic core are highly constrained by the require-
ment for a uniform liquid like, tightly packed bulk. This in turn, results from an
attractive (van der Waals) cohesive force between tails on the one hand, and the
requirement for connectivity between tail chain segments and between tails and
the (interface bound-) headgroup. Consequently the conformational freedom of
the chains is lowered with respect to a single (“free”) chain. The entropy loss as-
sociated with this tight packing is responsible for a significant repulsion between
chains, which depends on the curvature and surface areas (Ben-Shaul, 1995).

Simple geometrical consideration of a single lipid leads to the qualitative con-
clusion that amphiphiles with a very small headgroup and large tail volume
will result in negatively curved aggregates, while lipids with large headgroups
and rather short tails will prefer to pack in aggregates of positive curvature (Is-
raelachvili et al., 1977). Phospholipids are often intermediate between these two
cases, preferentially packing into planar bilayer.

Ultimately, the preferred geometry is the one that minimizes the free energy of

the system, and all the geometrical parameters (including the area per molecule
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Figure 1.4: The geometry of lipid aggregation is determined by a balance of forces,
acting in the headgroup, interface and tail regions. A free isolated chain is also shown
for reference.

a) are a result of this minimization. To a good approximation, the free energy of

a lipid molecule in an aggregate may be written as a sum of three contributions:

fi=fi+fs+ In (1.3)

These stem, respectively, from the hydrocarbon chains, the surface free energy
and headgroups’ interaction. The interfacial term, f;, may be expressed most
simply as f; = va, with v denoting the effective surface tension of the interface.
Theoretical predictions for f;, are more complex. They involve models including
electrostatic calculations (based, e.g., on PB theory) for charged headgroups, hard
core repulsion estimates, and phenomenological expressions (Andelman, 1995;
Lekkerkerker, 1989; Israelachvili, 1992; Ben-Shaul & Gelbart, 1994). On the
mean-field level, a successful, rather comprehensive treatment has been given to
the expression for f; (Ben-Shaul, 1995; Ben-Shaul & Gelbart, 1994). This was
done through examining the probability distribution function of a single chain in
the mean-field of its neighboring chains, subject to the geometrical packing con-
straints. Other, mostly phenomenological expressions have also been suggested
and utilized. Note, that these expressions are all local, intimately depending on

the geometrical packing constraints.

1.3.3 Elastic deformations

A useful approach to analyzing the free energy of lipid phases has been to describe
the free energy of a lipid layer in terms of its elastic properties. In general, three
modes of elastic deformation are possible for a lipid layer. The first is lateral
stretching (dilation). The second is a bending elastic energy.® The third is the

3The energy associated with deformations involving stretching are usually much larger than

the bending, and will therefore be ignored throughout this work.
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4 The curvature elastic energy

Gaussian (elliptic or hyperbolic type) curvature.
per lipid molecule, f¢ for small bending deformations of a lipid monolayer can

be expanded up to quadratic terms in the curvature:

k
f= a5(01 + ca — ¢p)? (1.4)

where ¢q is the spontaneous curvature, a local propensity of the monolayer that
depends on membrane composition and structure of the lipids forming it, and & is
the elastic bending modulus (Helfrich, 1973). In the case that the lipid phase has
a cylindrical or lamellar symmetry (such as the Hy and L, phases), the elastic

energy becomes: f = (ak/2)(c — co)>.

1.3.4 Frustration

Formation of stable lipid phases often involves a certain amount of “frustration”
energy. For example, a symmetric lipid membrane, is composed of two mono-
layers, each with the same intrinsic spontaneous curvature cy. Since in a bilayer
these monolayers are facing and touching each other (to avoid exposure of tails to
the water), they cannot both accommodate this spontaneous curvature, ¢, (un-
less it happens to be ¢g = 0). The resulting aggregate is necessarily frustrated, in
the sense that any curvature will be suppressed, and a compromising uncurved
membrane results (see Fig. 1.5). If the unfavorable frustration energy becomes
large enough, the membrane may no longer be the most stable packing structure
for these lipids. For instance, if a monolayer has a negative spontaneous curva-
ture, the inverted hexagonal, Hy;, phase may form, thus relieving some or all of
the frustration associated with bending. However, this structure is not altogether
rid of frustration. Although the monolayers propensity to form negatively curved
interfaces is satisfied, the constraint of filling the hydrocarbon interior of the
lipid chains involves another form of frustration. In the hydrophobic interstices
the lipid chains must stretch in order to fulfill the packing constraint (namely,
uniform chain segment density). This stretching is associated with a loss of con-
figurational entropy (Seddon, 1990; Seddon & Templer, 1995; May et al., 1997,
Kozlov et al., 1994). We shall address this point in more detail in Chap. 3, where

we discuss phase transitions between lipid—containing phases.

“Due to the Gauss-Bonnet theorem, which states that the integral of Gaussian curvature is
a topological invariant, and since all phases considered in this work have the same number of
membrane pieces and the same number of handles, we shall not consider this term further in

comparing lipid phases.
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Figure 1.5: Illustration of three types of lipid monolayers, with (left to right) positive,
zero and negative spontaneous curvatures. In a lipid bilayer all but the one with zero
spontaneous curvature will pay a certain frustration energy penalty.

1.3.5 Charged membranes

Lipid membranes often carry a net charge on their surface. This charge may
originate from a dissociation of a counterion (or proton) into solution, or from
the adsorption of a (polyvalent) ion from solution. Most biological membranes
are negatively charged, with around 10 % of their lipids being charged. The
most simple model of such a planar membrane is to consider an infinite planar
dielectric slab of low dielectric, €,;, and thickness ¢ with charges smeared on its
surface, with a constant charge density o, immersed in an aqueous solution of
dielectric €,, and a salt concentration corresponding to [p. It is often possible
to ignore the fact that the two membrane interfaces are charged (the decoupling
limit) as long as €,y /€, < t/lp. For this scenario, the PB equation can be solved
exactly (Andelman, 1995).

One limit is the result of the linearized version of the PB equation ( the
“Debye-Hiickel approximation”) for the potential, valid when the surface poten-

tial is low (or Ip is small), for a 1:1 electrolyte solution,

2
- — Kz 1.
W= (15)

where z is the distance away from the surface, Ip = k! is the Debye length,
and lgc = e/2mlg|o] is the so called Gouy Chapman length, which is related to
the distance between charges on the surface. Here we also introduce the Bjerrum
length, [5. The Bjerrum length is the distance at which the interaction between
two elementary bare charges is kgT'; in the mks convention Ip = €?/4mekpT. For
water at room temperature [z ~ 7.14A. In limit for which Eq. 1.5 is derived, the
diffusive layer of ions near the membrane surface is characterized by a thickness
[p. In other limit, corresponding to the case of no added electrolyte (or high

surface potential), the potential away from the surface is:

77/} = -2 IH(Z + lgc) (16)



14

INTRODUCTION

In this limit, the thickness of the diffusive counterion layer is characterized by lgc.
Here, the cumulative amount of counterions per unit area, from the surface and
up to a distance lgo from it, is —o /2. In both limits, it is clear that counterions
have a strong tendency to reside close to the membrane. This result reflects the
infinite 2D nature of the charged plane considered, and the strong consequent
potential. As we shall see, dimensionality is crucial for maintaining a diffuse layer
around the macroion: for the 1D cylindrical geometry the layer may be much less
compact, or even non existent (see Sec. 1.4.3). For “0D” objects such as charged
colloidal spheres, the diffuse layer is weaker still, and only a renormalization type
effect can appear (Alexander et al., 1984; Borukhov, 1999).

The membranes bending constant, k, is largely affected by the fact that the
membrane is charged. We shall return to this point in Chap. 3, where we show
how using the variational approach mentioned in Sec. 1.2.1, we can account for

this change is a self consistent way.

1.3.6 Mixed charged membranes

Typical biological membranes are primarily composed of phospholipids of many
types. These can have a variety of attached chains and headgroups, both charged
and uncharged, the former being charged according to the pH and salt conditions
in solution. The question of how a membrane, possessing headgroups that can
ionize, will be charged under certain pH and salt conditions, has been previously
addressed (Ninham & Parsegian, 1971). Within PB theory, this corresponds to
solving the equation with a special (“charge regulation”) boundary condition.
Furthermore, since the the lipids are in the fluid state, they can migrate later-
ally in the membrane. Thus the membrane lipids can respond to the field of,
e.g., externally interacting charged macromolecules, or to elastic deformations,
by varying their local composition. This migration and hence demixing is en-
tropically unfavorable, yet a substantial segregation is often found to lower the
total free energy of the system. This may correspond to a segregation of charges
around an oppositely charged macroion, or to a more favorable local composition
of lipids that will match some (e.g., constrained) curvature. One example where
this effect can be rather large is the adhesion-induced phase separation and reor-
ganization in a the interaction of (oppositely charged) membranes (Nardi et al.,
1998). More generally, the membrane elastic and electrostatic degrees of free-
dom are coupled. For example, it was found that for a mixed, self-adjusting
(annealed) membrane, an electrostatic coupling between the inplane distribu-
tion and the membrane curvature produces an added effective interaction which
stabilizes modulated phases (Andelman, 1995; Guttman & Andelman, 1993).
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In the following chapters we shall return extensively to the effect of lipid
mobility in mixed (charged and uncharged lipid) membranes. We will show how
the variational approach introduced in Sec 1.2.1 can be used to derive special
boundary conditions for the PB equation. Solving this equation will lead to self
consistent results for the local lipid composition and the electrostatic (charging)
free energy of the system. These will be shown to be a consequence of the intimate
coupling between the different local membrane properties, such as elasticity and

electrostatics.

1.4 DNA

1.4.1 Structure

DNA (deoxyribonucleic acid) is a semiflexible polymer made of deoxyribonu-
cleotide units that form a chain through a polyester backbone. Together with
RNA (ribonucleic acid), the two make up a class of biopolymers called polynu-
cleotides. It is these molecules that are responsible for carrying the genetic in-
formation of biological, living, organisms.

Formally, the ester is derived from phosphoric acid and a sugar (deoxyribose).
Attached to each sugar is one of 4 heterocyclic bases. The bases involved in
forming DNA are: adenine (A) and guanine (G) (derivatives of purine) and
thymine (T) and cytosine (C) (derivatives of pyrimidine), as shown in Fig. 1.6.
A sugar—base unit is called a nucleoside and a base-sugar-phosphoric acid unit is
called a nucleotide.

The unique properties of DNA are mainly a result of its fascinating secondary
structure. This, in turn, was elucidated by J.D. Watson and F.H.C. Crick (1953),
using X-ray diffraction measurements, for a certain form of DNA named B-DNA.
They found that DNA is made up of two polynucleotide chains wound about each
other to form a double helix with a radius of Rp ~ 10A, often also referred to as
double stranded (ds-) DNA. The chains are held together at intervals by hydrogen
bonds, spanning between bases on apposed strands. It was also found that A was
always bonded to T, and G is always bonded to C. In this sense, the two strands
are complimentary. This specificity is a result of steric restrictions dictated by the
periodic nature of the DNA backbone. The genetic code is therefore embedded in
the exact sequence of matching base pairs along the polyester chain (for a more
comprehensive discussion see, e.g., Stryer (1988), Morrison and Boyd (1992)).
Each of the two helixes is right handed, and contains about 10.5 paired nucleotide
units or “base pairs” (bp’s) per turn. As shown in Fig. 1.7, the pitch of B-DNA
is 34A. The distance between two bp’s along the chain’s length is therefore
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Figure 1.6: Elements of DNA: (left) one strand of DNA is composed of the phosphate
sugar backbone which can carry four types of bases; (right) the four bases possible in
DNA molecules: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). These
bases form specific pairs (AT and GC) between two complimentary strands.

~ 3.4A. Since there are two phosphate groups (which are negatively charged
in aqueous solution) associated with each bp, the average distance between two
charges along the DNA helical axis is [ ~ 1.7A, making DNA one of the most
highly charged polyelectrolytes in nature. The DNA bases face the inner side
of the helix, whereas the (charged) phosphate and deoxyribose units are on the
outside. The planes of the bases are almost perpendicular to the helix axes, while
the planes of the sugars are nearly at right angles to the those of the bases.

To this point DNA has been treated as a homogeneous polymer whose prop-
erties are uniform throughout. However, DNA has only such uniform properties
if its sequence is random. Specific base sequences give rise to considerable de-
viations from these (see e.g., Olson at al. (1995) and references therein). For
example G-C rich stretches of DNA may develop a spontaneous, non-zero curva-
ture and even twist. In nature, this deviation is used to form recognition sites
along the DNA molecule, which mark specific places along the DNA for inter-
action with other biomolecules such as proteins (see Sec. 1.5). However, in all
further discussion we shall limit ourselves to the more simple case of random
(or close to random) B-DNA. In addition, the nature of the solution and the
environment in which the DNA molecule resides, also affect its structure, e.g.,
through association with other molecules or dehydration. Since the discovery of
B-DNA, other forms (isomers) have been identified (e.g., Z- and A-DNA). These
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Figure 1.7: Views of B-DNA: a) a stick and ball type representation of a ds-DNA
molecule. the pitch of the DNA helix is shown to be = 34A. b)Ribbon repre-
sentation of B-DNA showing its double helix nature. c) A “top view” of B-DNA,
with a diameter = 20A/ d) An AFM image of a single DNA molecule adsorbed
on a lysine functionalized mica surface. [coordinates for B-DNA: the protein data
bank, AFM image: from the Cambridge university department of pharmacology
http://www.phar.cam.ac.uk/RI/lots.html]

have rather different molecular parameters from B-DNA (Alberts et al., 1994;
Stryer, 1988).

1.4.2 Persistence length

The physical properties of DNA are a direct consequence of their (chemical)
structure. One such property is the high stiffness of the DNA molecule. This is
reflected in the persistence length that the DNA molecule displays. The persis-
tence length may be considered as a measure of the distance over which a polymer
chain is still kept straight, and segments along its length are still correlated. Con-
versely, it may be regarded as the distance beyond which thermal fluctuations
erase orientational correlations.

More precisely, let us denote by 1) the angle between two (unit) vectors, 47 and
U5, tangent to the axis of the DNA molecule (or other polymer) and separated
by a distance s along the molecule contour line (see Fig. 1.8). Assuming an
invariance in the elastic properties along the polymer chain, the avarage of the
cosine of ¢ over all vectors, 47 and w3, seperated a distance s apart (reflecting

also the thermodynamic ensamble avarage) may written, at least for s sufficiently
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Figure 1.8: Illustration of a semi-flexible polymer chain with two tangent (unit) vectors
i1 and iy at two points seperated by a distance s along the chain, forming an angle
between them.

large, as

(cosV(s)) = e~/ (1.7)

where [, defines the persistence length for a polymer. For a simple synthetic
polymer, such as polystyrene, [, ~ 1.0 — 1.4A. In contrast, for ds-DNA one finds
l, ~ 50nm (approximately 150 bp’s)(Grosberg & Khokhlov, 1994). This property
of the DNA molecule can be seen, at least approximately, in the inset of Fig. 1.7.
This atomic force microscopy (AFM) image of a single DNA molecule adsorbed
on a mica surface functionalized with (positively charged) lysine clearly shows
that the distance between bends in the DNA molecule is of the order of 50nm,
not much different than [, of DNA in solution.

What is the source of rigidity in DNA ? For a neutral polymer, the persistence
length is directly proportional to its bending rigidity: the farther fluctuations are
endured, the more rigid the polymer. In ds-DNA, the interaction between stacked
bases forms a molecule that is hard to bend along its axis. In contrast, single
stranded DNA — lacking the ordered stacks of the ds-DNA double helix supported
by hydrogen bonds — has a persistence length of only a few A. However, ds-DNA
is also a highly charged molecule, and it is usually solvated in an aqueous salt
solution (such as the interior of living cells). For a polyelectrolyte with a large
persistence length, such as DNA, the Odijk-Skolnik-Fixman theory (Odijk, 1977;
Skolnick & Fixman, 1977) can be used to estimate the influence of the electrostatic
interaction between charges along the chain, on the rigidity of the molecule. The
theory predicts that at short distances (shorter than about 10 — 20A for DNA)
the electrostatic influence on the rigidity is negligible. However, at distances

larger than this, the persistence length becomes significantly larger, due to long



1.4 DNA

19

range electrostatic forces. The contribution to the persistence length due to the
presence of salt in solution, Al,, may be estimated in terms of the screening
length, Ip (Sec. 1.2), to be Al, = Ipl%/4l*>. For double stranded DNA in a
salt solution of about 0.1M, Al, ~ 5nm. It can therefore be expected that the
salinity of double stranded DNA solutions (even for simple salts) will change the
persistence length to some degree. Indeed, experimental numbers for [, vary quite

significantly.

1.4.3 Counterion distribution

In many cases, and throughout this work, it is adequate to consider DNA strands
to be infinitely long rigid rods with negative charges uniformly distributed over
its surface. In doing this, we ignore any edge effects, and any effects associated
with their flexibility; in particular curvature fluctuations and undulation forces
(Podgornik et al., 1989; Podgornik et al., 1994; Strey et al., 1997), and also
the possibility for specific interactions and sequence recognition between DNA
strands (Kornyshev & Leikin, 2001). We also ignore the groove structure and
the discrete distribution of phosphate charges. Although this picture provides a
reasonable approximation for the electrostatic potential several A’s away from the
charged surface, (Wagner et al., 1997), it may quantitatively fail at the immediate
vicinity of the surface (Kornyshev & Leikin, 2001). Albeit, this approximation is
often useful in view of the fact that the DNA persistence length, [, is much larger

than the (axial) separation between neighboring charges, [, and DNA radius Rp.
For a charged cylinder, the PB equation has been solved both for (either

analytically or numerically) the case of added salt, and for salt-free solutions(see,
e.g., (Lifson & Katchalsky, 1954; Hill, 1955; Oosawa, 1970)). We cite here only
the result for high salt concentration, where the PB equation may be linearized,

with the resulting potential at a distance r from the rod axis:
Y(r) = AKy(kr) (1.8)

where Kj is the zero order modified Bessel function of the second kind, and A
is a constant related to the surface charge density (Brenner & Parsegian, 1974).
For small r, there is no screening from counterions, and the potential behaves
like that of a bare cylinder (logarithmic). For large r, the potential tends to fall
off exponentially, due to the screening of the cylinder surface by counterions in
the diffuse layer. This notion of some layer of counterions which stays close to

the cylinder surface led to the notion of “counterion condensation”.
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Figure 1.9: Schematic of the model used by Oosawa in considering charged rigid
polyelectrolytes. A layer of adsorbed counterions resides in a cylindrical volume of
radius r around the polymer, while the rest are far from the charged polymer within a
cylindrical cell of radius R

Counterion Condensation

Oosawa and Manning independently proposed a simple model to explain some
experimental results, pertaining to the anomalously low activity coefficient of
counterion in solutions containing DNA (or any rigid polyelectrolyte), even at low
salt concentrations (Oosawa, 1970; Manning, 1978; Manning, 1969). They have
considered a unit length of an almost straight segment of a rigid (semiflexible)
polyelectrolyte, solvated in a (salt free) solution. The polymer is confined to a cell
of volume V = 7R? (we may assume that within this simple, Wigner-Seitz like,
model 2R is the average distance between two polymers in solution). There are N
(fixed) charges on this segment, and therefore N (univalent) counterions. These
counterions are assumed to be in one of two “states”. As schematically illustrated
in Fig. 1.9, NV, are bound ions, constrained to move in a small (cylindrical) volume,
v = 7r?, around the polymer, due to electrostatic attraction. The remaining,
mobile, ions N — N, are free to move in a larger cylindrical volume, V' — v, thus
gaining translational entropy. The equilibrium density of ions in these two states
is found by equating the chemical potential in the two regions, with the result:
% = % exp(—eAp/kgT) (1.9)
where e is the elementary charge, and Ay is the potential difference between a
charged ion in the “bound” and “free” states. In the above equation the sim-
plifying assumption is made that a counterion can only reside at a distance r
(bound), or R (unbound), away from the polymer. Denoting the fraction of free
ions by Xy = (N — N,)/N, and the ratio of the proximal volume to the overall
volume by ® = v/V | Eq. 1.9 may also be written as:
1 - Xy I ) eAyp

X; 1—® kgl

(1.10)

In
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Since N, ions are bound, the polymer effective (net) charge as seen from outside
the proximal cell is N—N, = NX;. The potential difference may be approximated
by that of a simple cylinder, Ap = 2(X e/el)In(R/r). Here we have used | =
1/N, so that X/l is simply the net charge on the polymer. Using this expression
for Ay, Eq. 1.10 becomes:

1- X
In I —1n ¢
Xy 1—-0

1
+ X Ao I 5 (1.11)

where A\, = €?/ekpTl = Ig/l is the “Oosawa-Manning” parameter, and [ is the
distance between two charges along the polymer. Now, looking at the behavior
at infinite dilution, i.e. ® — 0, Eq. 1.11 is:

1-X
In L — (1= X Aom) In® (1.12)
Xy

In the limit ® — 0, this equation implies different behaviors, depending on
whether \,,, is smaller or larger than 1 (Oosawa, 1970). For A,, < 1 we find
X; — 1. On the other hand, for A,, > 1, the degree of dissociation is some
number in the range 0 < Xy < 1. This may be considered a form of condensation.
When charges on the polymer are closer than [ apart, a condensed layer of
counterions appears close to the polymer. The translational entropy never wins
over their electrostatic binding energy. A simple qualitative explanation to the
condensation may be given as follows. If the distance between two fixed charges
is such that they interact with an energy much larger than kg7, the gain in
energy from relieving this positive contribution to the free energy (through the
binding of a counterion) is larger than the possible translational entropic gain
of the same counterion. Some ions therefore may be expected to reside close to
the DNA molecule, sufficient to create an effective “renormalized” [ such that
leﬁ =1/X; — Ig.

This notion of “counterion condensation” has been extended to many other
cases, such as for solutions containing added salt and to the interaction of two
DNA molecules (Manning & Ray, 1998; Ray & Manning, 1994). Though there
may be some merits to the two-state model of Oosawa and Maning, it seems that
the predicted results based on this oversimplified picture are often quantitatively
and sometimes even qualitatively wrong. The theory has therefore been under a
fair amount of scrutiny and criticism (Stigter, 1995; Deserno et al., 2000; LeBret &
Zimm, 1984). In particular it has been suggested that the only consistent method
for evaluation of the counterion atmosphere around DNA is (on the mean-field
level) PB theory. Even so, it may be useful to bear this model in mind when
speaking about DNA, for which \,, > 1 (I & 1.7A), in the sense that DNA
in aqueous solutions has many (potentially mobile) counterions bound in close

proximity.
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1.4.4 DNA-DNA interaction and condensation

DNA strands are negatively charged, and therefore it seems reasonable to assume
that they will repel each other. This in fact the result that is always obtained
within PB theory (see e.g., the studies involving some approximations (Brenner
& Parsegian, 1974)).

In App. A, a numerical method for solving the PB equation is presented.
This method will later be used to solve for other systems, with more elaborate
boundary conditions (Harries, 1998).

In spite of the expected repulsion between DNA strands, inside living cells
(be they the simple prokaryots which lack a nucleus or the more highly evolved
eukaryots) and viruses, DNA in always found to be highly compact. It is amazing
to think that several meters of DNA are packed inside practically every human
cell ! This compactisation is achieved in cells by positively charged peptides
and polyamines (such as spermine and spermidine) and proteins (particularly
Histones) (Stryer, 1988). It has been shown that DNA undergoes an abrupt
transition to a densely packed form in the presence of a wide range of condensing
agents. These include multivalent cations, neutral and charged polymers and
alcohols (for recent reviews see Bloomfield (1991; 1992) and Bloomfield (1996)).
In all these cases, strong forces, either electrostatic or “depletion” type forces (see
e.g., (Israelachvili, 1992)) overcome the repulsion between strands (Park, 1999;
Rau & Parsegian, 1992).

DNA is known to form a multitude of phases when condensed. Some of these
mesophases reflect the elongated aspect ratio of DNA, akin to the phases observed
in (other) liquid crystalline phases. Other phases also reflect the helical nature
of the DNA helix, forming twisted (or even double twisted) phases (for reviews
see (Livolant & Leforestier, 1996; Podgornik et al., 1998; Gelbart et al., 2000)).

Some 30 years ago, Oosawa proposed that correlated fluctuations in the coun-
terion density around macroions could lead to van der Waals like attractions be-
tween the two macroions (Oosawa, 1970; Oosawa, 1968). This is one important
case where correlations between mobile ions must be included to get the correct
effect (see Sec. 1.2.1). Computer simulations helped in assessing the ability of mo-
bile multivalent ions to cause attraction between like-charged macroions. Since
that time, another alternative mechanism was suggested as the cause of attrac-
tion between macromolecules, namely a Wigner-crystal type attraction (Rouzina
& Bloomfield, 1996; Grgnbech-Jensen et al., 1997; Shklovskii, 1999). According
to this mechanism, ions firmly (electrostatically) bound to one macroion may
attract a similar, correlated array on another macroion. This will again lead to
attraction. An important difference between the two mechanisms, is that the

former is based on thermal fluctuations, and therefore the resulting attraction
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between macroions becomes stronger the higher the temperature. In contrast,
for the latter, the attraction results from correlated bound counterions. There-
fore, the lower the temperature, the stronger the binding of the ions, and the
attraction between macromolecules is reinforced. A crossover between these two
regimes may therefore be expected (Oosawa, 1970; Grenbech-Jensen et al., 1997;
Lau et al., 2001).

1.4.5 Gene therapy and gene delivery

An individual gene in a living cell is a stretch of DNA that, in most cases, acts as
a blueprint for making a specific protein. In its sequence is coded the sequence
of amino acids composing the protein. If a particular gene is mutated, its protein
product may not be made at all, or may work poorly or even too aggressively. This
flaw may disturb vital functions of cells and tissues, and thereby cause symptoms
of disease. Scientists have long been enchanted by the possibility that they could
replace, silence, or otherwise manipulate defective genes by putting foreign DNA
into them, thus achieving “transfection” — the delivery of functional genes to
cells. During the 1960’s, investigators established that a principle obstacle to the
uptake of DNA by cells was that in aqueous solutions of the kind found in cells,
the molecule is negatively charged. This means it tends to be repelled from the
membranes of cells, since they are also negatively charged.

Many strategies for gene delivery in gene therapy have been proposed and
studied (Friedmann, 1997). One of these employed modified viruses to shuttle
DNA into human cells. The modified virus with its cargo of DNA invades cells, as
a normal virus would, then releases the “healthy” gene, which is then transferred
to the nucleus. Though modified viruses are effective at transferring genes into
cells, their therapeutic use has encountered some difficulties. A major limitation
is that a patient may generate an immune response to the virus, thereby destroy-
ing the virus itself or possibly killing the infected cells before the therapeutic gene
has had a chance to help a patient.

A wide variety of non-viral strategies to gene delivery have also been pro-
posed (Felgner, 1997). All use a positively charged agent to complex DNA. These
include mineral calcium phosphate, and organic polymers such as DEAE-dextran.
The tight complex formed is then taken up by the cells. Papahadjopoulos and
Nicoloau, independently managed to achieve transfection by mixing DNA with
liposomes. Felgner later proposed using mixed, cationic and neutral liposomes,
instead of the naturally abundant negatively charged lipid membranes (Felgner
et al., 1987; Felgner & Ringold, 1989). This, it was hoped, would make the li-

posomes interact more easily with DNA, as well as with the cell surface. It was



24

INTRODUCTION

found that stable DNA-lipid complexes (“lipoplexes”) were formed. These com-
plexes have been shown to efficiently transfect cultured cells. Their clinical use is
however hampered, mainly by the toxicity of the synthetic lipids used. Therefore,
a substantial effort has been made to increase the efficiency of transfection, while
lowering the toxicity of these potential agents. An important step in devising
more efficient complexes, is understanding the relationship between the struc-
ture, composition and function (i.e., the transfection efficiency) of the complexes,
so as to later direct the synthesis of DNA-lipid complexes towards the desired
structures. We shall return to this point in Chaps. 2 and 3, where we discuss the
theoretical basis for the structure-composition relationship experimentally found

in these complexes.

1.5 Proteins

1.5.1 Structure

Proteins are found in all living cells. They are responsible for forming and main-
taining the shape of cells and the complete organisms, and for coordinating their
functions. They are a major component of muscle, tendons, nerves, enzymes,
antibodies and hormones (Stryer, 1988; Alberts et al., 1994).

Proteins are polyamids, whose monomers are derived from a—amino car-
boxylic acids. Fig 1.10 shows how the amino acid residues are joined by amide
(peptide) linkages. To every third atom on the chain, a (generally different)
side chain is attached. A single protein may contain hundreds to thousands of
amino acid units. By convention, if under a molecular weight of 10,000 Daltons a
polyamide is named a peptide. Twenty kinds of amino acids are commonly found
in proteins, and these determine which side group can be attached to the peptide
chain. The number of different combination, each constituting a different possible
protein, are huge. Some of these side chains contain basic groups, such as lysine
(Lys) or arginine (Arg), and are therefore positively charged at pH=7. Others
are acidic; aspartic (Asp) and glutamic (Glu) acids, see Fig. 1.11. Histidine (His)
is also a basic amino acid, but may be considered neutral at pH=7. In general
every side chain has specific propensities. In 1951 Linus Pauling and Robert
Corey proposed, based on x-ray data and molecular models, two polypeptide
structures: the « helix and the 3 pleated sheet. Stabilized by hydrogen bonds
between the NH and CO groups of the main chain, the « helix forms a rodlike
structure. Conversely, the 3 pleated sheet forms a sheetlike structure in which the
polypeptide chains are almost extended. Which of these “secondary structures”

that are ultimately formed, and how they arrange into superstructures, depends



1.5 PROTEINS

25

H -~ H )
| | g /
""" N— i — i
[ o |
R © R, 7 R, ©
Amide linkage

Figure 1.10: Chemical formula representation of a protein backbone made of amino
acids with different side chains, connecter through an amide bond. The R]s denote the
amino acid “side chains”.

on the particular sequence of acids in the heteropolymer. The tertiary structure
of a protein forms when different structural motifs are folded together, some-
times with turns and loops between them, sometimes with di-sulphide bonds,
and sometimes from several polypeptide chains joining together (Stryer, 1988).
Predicting this intricate folded structure, which confers the specific activity of
a protein, on the basis of the order of amino acids alone, has been the focus of
much scientific research.

It is possible to divide proteins into two broad classes: fibrous and globular
proteins (Morrison & Boyd, 1992). Fibrous proteins are long and threadlike,
and tend to bundle into fibers by strong intermolecular forces (such as hydrogen
bonds) all along their length. On the other hand, globular proteins spontaneously
fold into compact units that often approach spheroidal shapes. The specific se-
quence of amino acids along the polymer dictates the final shape. Hydrophilic
residues, such as charged groups, in general, line the outer surface of the pro-
tein, so as to achieve better contact with the surrounding water molecules. The

hydrophobic parts tend to be turned inwards, facing each other.

1.5.2 Peripheral proteins

According to their function, proteins interact with a wide range of other macro-
molecules, such as other proteins, nucleic acids, and lipid membranes. The pro-
teins that are found to be intimately associated with biological membranes can
be classified as being either peripheral (associating with the membrane through
a lipid anchor or by adsorption) or integral (partially or completely embedded in
the membrane), according to how strongly they are found to be bound to the lipid
membrane. The function of these proteins is most often related to signaling and
trafficking across the membranes, or to anchoring or docking of other molecules
to the membrane surface, such as proteins from the intercellular matrix. Inte-

gral proteins are almost always found to span or penetrate the lipid membrane,
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Figure 1.11: Chemical structure of the “basic” amino acids : lysine, arginine and
histidine, and of the “acidic” amino acids:Aspartate and Glutamate.

and interact extensively with the hydrocarbon chains of the membrane lipids.
Peripheral proteins are bound to membranes mainly through electrostatic forces
and also through hydrogen bonding. Therefore, the binding of these proteins de-
pends strongly on the ionic strength: it becomes weaker the more salt is added.
In general peripheral proteins are globular. Since most biological membranes are
negatively charged, the peripheral proteins interacting with it are generally ei-
ther positively charged on their surface, or they are roughly speaking, positively
charged on one hemisphere, the one proximal to the apposed membrane (while
the other may be almost neutral or negatively charged).

An example of one well studied peripheral, water soluble protein is cytochrome
¢. The protein is roughly spherical, with a diameter of 34 A. Tt serves as an
electrontransferring protein and contains a heme prosthetic group. Cytochrome ¢
carries electrons from cytochrome reductase, the second of three proton-pumping
complexes in the mitochondrial based respiratory system chain, to cytochrome ox-
idase, the third of these membrane based pumps. The highly charged cytochrome
¢ possesses clusters of lysine side chains around the heme crevice on one hemi-
sphere of the protein. This array of positive charges on the face of cytochrome ¢
is central to the recognition and binding of the reductase and oxidase, which are
negatively charged. Moreover, the proper membrane association of cytochrome c,
which is essential to its function and activity as an electrontransferring protein,
has been shown to require the presence of acidic phospholipids. The exact mech-
anism of the binding and adsorption of this protein to the membrane has also
been studied (Rytomaa & Kinnunen, 1996; Stryer, 1988; Alberts et al., 1994).
Furthermore, it has been shown that cytochrome ¢ could cause lipid segregation
and induce lateral phase separation in the membrane it adsorbs onto (Boggs
et al., 1977; Birrell & Griffith, 1976). We shall return to discuss the adsorption
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of peripheral proteins onto membranes in Chap. 4.
In following chapters we will only be modeling peripheral proteins at the most
elementary level: we will consider them to be spherical objects of low dielectric

constant with (positive) charges smeared on their surface.

1.6 Charged macromolecule interaction

Before plunging into the realm of oppositely charged macromolecular interac-
tions, it is useful to note why they should interact at all. When separated, each
charged macroion in solution is surrounded by a diffuse layer of spatially confined
counterions. Why then do they attract each other to form complexes 7 Upon
approach the fixed macroion charges partially (sometimes fully) neutralize each
other, allowing the release of mobile counterions into the bulk solution, thereby
increasing their translational entropy. This implies that macroion association in
solution is, to a large extent, an “entropically driven” process, which was named
“counterion release” (Record et al., 1978). Yet, the actual contribution of the
counterion entropy to the association free energy depends on the detailed geome-
tries and charge distributions of the separated and bound macroions, as well as
on the salt concentration in solution (Record et al., 1978; Sharp et al., 1995;
Palkar & Lenhoff, 1994; Sens & Joanny, 2000).

Counterion release has been studied extensively in the context of “biomacro-
molecular” association processes (such as the binding of proteins to DNA) which
can be described in terms of chemical equilibrium theory (Record et al., 1978;
Sharp et al., 1995). The “condensed” counterions are treated as bound ligands.
The number of released ions upon association of the two macromolecules may be
inferred (experimentally) from the salt dependence of the standard reaction free
energy. The theoretical interpretation of these results relies on structural and
thermodynamic-electrostatic models for calculating the number of “bound” ions.
More generally, the phenomenon of counterion release is relevant to any system
of oppositely charged macroions, for instance complexes involving high molecular
weight polyelectrolytes (Khokhlov et al., 1993; Dautzbenberg, 1997).

This underlying mechanism of association was also used to describe the in-
teraction between two oppositely charged planar surfaces with a surface charge
density of o7 < 0 and o, > 0, a distance h apart. Using linear PB theory, the
electrostatic “disjoining pressure” between two such surfaces was shown to be
(Parsegian & Gingell, 1972):

P(h) = 87 (0?2 + 02 — 2|00y cosh kh)
e (2sinh kh)?

(1.13)
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For large h, the interaction is attractive, due to the continuous release of coun-
terions from the volume between the two surfaces. For all cases where |o1| # 09,
repulsion appears for small A. This is caused by the confinement of counteri-
ons (which must remain in the gap to provide local charge neutrality) and the
subsequent loss of entropy (Parsegian & Gingell, 1972; Nardi et al., 1998). An
important consequence of this is that attraction will be observed for all h, only
if the two surfaces exactly neutralize each other.

Later, in Chap. 2, we shall return to this point, arguing that the association
of DNA and charged lipid membranes can unambiguously be attributed to the
release of counterions, both theoretically and experimentally. We will show that
maximal ion release is associated with the special point of isoelectricity, i.e., when

the number of fixed charges on both macroions is equal.

1.7 Overview

Each of the molecular components surveyed in this introduction has unique prop-
erties. These will manifest themselves in the macromolecular assemblies we are
about to examine. In Chap. 2 we will consider a system of DNA interacting with
mixed, charged and neutral, planar lipid membranes, to form a specific type of
composite phases, elucidated and named the LS phase. We will present a the-
oretical model that will include all relevant degrees of freedom self-consistently.
The model will be shown to account for all experimental observations for the
system. In particular we will stress the importance of the membrane fluidity and
the mobility of lipids in the membrane plane. Another point we will address is
the role of counterion release in the formation of these composite phases. We will
show how the theoretical model correctly predicts the experimental results.

In Chap. 3 we will extend the model discussed in Chap. 2 to include another
important degree of freedom, namely the membrane’s ability to bend around
DNA molecules. When lipid bilayers are allowed to bend, i.e., when they are
relatively “soft” with respect to bending deformations, the resulting complexes
may display a corrugate membrane in an L,-like complex, or even bring about a
transition to yet another phase, the HY phase, reminiscent of the pure lipid Hy
phase. We will demonstrate the important coupling between local curvature and
electrostatic properties, which add to the stability of the complexes by further
lowering the complexe’s free energy.

In Chap. 4 we utilize similar theoretical tools to model a system of periph-
eral proteins interacting with an oppositely charged membrane. Again, we will
argue, that membranes fluidity is an important degree of freedom, fundamental

in modeling this system. We will also emphasize the important role of lateral
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protein-protein interaction.

A short summary will follow in Chap. 5.
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Chapter 2

Lamellar DNA-Lipid Complexes

2.1 Introduction

In this chapter we examine a most compelling example of macroion association,
involving the formation of composite phases upon mixing DNA and liposomes
composed of a binary (cationic and neutral) lipid mixture.! As discussed in
Sec. 1.4.5, the interest in the complexes formed was inspired by the search for
liposomal vectors that can serve as gene delivery vehicles, i.e., in the targeting
of extracellular DNA into cell nuclei (Felgner et al., 1987; Felgner & Ringold,
1989; Felgner et al., 1996; Gershon et al., 1993; Gustafsson et al., 1995; Lasic
et al., 1997; Zuidam & Barenholz, 1997; Meidan et al., 2000; Hui et al., 1996;
Mok & Cullis, 1997). Fundamental electrostatic issues arise immediately when
examining these phases, because of the strong interactions between the DNA and
the cationic lipids used to complex it.

In a series of studies Rédler et al. (Rédler et al., 1997; Radler et al., 1998;
Salditt et al., 1997; Koltover, 1998) reported the existence of highly novel DNA-
cationic liposome complexes (also named “lipoplexes” (Felgner & Ringold, 1989)),
as determined by high resolution synchrotron X-ray diffraction and optical mi-
croscopy. In particular, one type of complexes was shown to consist of multi-layer,
lamellar, smectic-like stacks of mixed bilayers, each consisting of a mixture of the
charged cationic lipid (CL), e.g., DOTAP and neutral (“helper”, HL) lipid, e.g,
DOPC (see Sec.1.3), with monolayers of DNA strands intercalated within the
intervening water gaps, see Fig. 2.1. The DNA strands within each gallery are
parallel to each other, exhibiting a definite repeat distance d. While d depends on
the CL/DNA and CL/HL concentration ratios, the spacing between two apposed

!The results presented in this chapter were previously reported in Harries et al. (1998) and
Wagner et al. (1997).
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Figure 2.1: Schematic illustration of the lamellar (L) lipid-DNA complex.

lipid monolayers is nearly constant, h ~ 26A, corresponding to the diameter of
a double stranded B-DNA (2R, ~ 20 A) surrounded by a thin hydration shell.
This lamellar (also named the LS or “sandwich”) complex, is stabilized by the
electrostatic attraction between the negatively charged DNA and the cationic
lipid bilayer. Without DNA the lamellar lipid phase (L,, see Sec. 1.3) is unstable

owing to the strong electrostatic repulsion between the charged bilayers.

Quite different equilibrium ordered phase morphologies were found to arise for
other choices of HL. In the case of DOPE (see Sec.1.3), or lecithin, for example,
inverted hexagonal (“honeycomb” or Hf;) organization of the lipid, with single
strands of ds-DNA in aqueous solution regions, were found to form (Felgner et al.,
1987; Tarahovsky et al., 1996; Koltover et al., 1998). The HY structure may be
regarded as an ordinary inverse-hexagonal (Hy) lipid phase with DNA strands
intercalated within its water tubes. Here too, the diameter of the water tubes is
just slightly larger than the diameter of the DNA “rods”. The presence of DNA
is crucial for stabilizing the hexagonal structure. Without it, strong electrostatic
repulsions will generally drive the lipids to organize in planar bilayers. In fact, the
“raw lipid materials” from which hexagonal complexes are formed are liposomes,

namely, lipid bilayers.

Metastable intermediates, and in particular the “Spaghetti” structures, have
also been reported, in which each (possibly supercoiled) DNA strand is coated by
a cylindrical bilayer of the CL/HL lipid mixture (Sternberg et al., 1994; Stern-
berg, 1996). Both these honeycomb and spaghetti-like structures were previously
investigated theoretically (May & Ben-Shaul, 1997; Dan, 1998).

Experimental studies show that the two ordered complex structures show a
different type of interaction with living cells. A correlation was found between the

structure of the lipoplexes formed and the transfection efficiency. (The structure
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formed was in turn dependent on the specific choice and relative amount of HL,
CL and DNA.) For example, the H; complex was found generally to be a more
potent vector than LS (Lin et al., 2000). However, the operation mechanism
is not entirely clear (Hui et al., 1996; Zuidam et al., 1999; Meidan et al., 2000).
Understanding how to control and manipulate the formation of specific phases

should aid in the design of more potent lipid based gene delivery vectors.

In this chapter we treat in detail the electrostatics and self-assembly character-
istics of the multi-bilayer lamellar stacks of intercalated DNA: the LY structures,
see Fig. 2.1. In Sec. 2.2, we address them within the general context of the sta-
tistical thermodynamics of aqueous solutions of DNA and mixtures of neutral
and cationic lipids. Mobile counterions are described by the nonlinear Poisson-
Boltzmann (PB) equation, which is solved numerically. In the theoretical model
presented in this chapter we neglect elastic deformations of the DNA strands and
bilayers, treating them as a rigid macromolecule. This is appropriate for bilayers
composed of monolayers with small spontaneous curvature, (see Sec. 1.4, 1.3 and
Chap. 3). On the other hand, we explicitly allow for the possibility of spatial
inhomogeneities in the membrane surface charge density, in response to interac-
tions with the cationic DNA. This effect will be shown to be significant, reflecting
the “extra” degree of freedom associated with cationic lipids in mized-fluid, bilay-
ers. Thus, we wish to account for the variation in charge density of the charged
lipid headgroups on the membrane surface in the direction normal to the DNA
strands, in a way which depends on the distribution of counterions (electrostatic
potential), which in turn depends on the charge at the surface. In solving the
PB equation, then, we need to treat the (Gauss law) boundary conditions at the
membrane surface in a fully self-consistent way to account for this redistribution
of charges. We do so in Sec. 2.3 using the variational approach outlined in Sec 1.2.
We thus derive the appropriate boundary condition for the membrane surface,
which is then solved self-consistently within PB theory. Results are presented for
a wide range of DNA-DNA spacings, overall lipid composition, and added salt

concentrations.

Generally, we find that lipid mobility favors optimal (local) charge matching
of the apposed DNA and lipid membrane. This is the state in which a maximal
number of mobile counterions are expelled from the gap, implying a maximal
gain of free energy (see Sec. 1.6). However, the tendency for charge matching
(hence migration of lipid molecules to/from the interaction zone) is opposed by
the unfavorable lipid demixing entropy loss associated with it. This tendency of
charged lipids to segregate in the vicinity of the rigid charged macromolecule has
gained some experimental support through nuclear magnetic resonance (NMR)
studies (Mitrakos & Macdonald, 1996). We shall see that the lipid composi-
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tion profile within the bilayers is determined by a delicate balance between the

electrostatic and mixing entropy contributions to the free energy of the complex.

Equipped with the free energies of the CL-DNA complex and its separate
components, we proceed to determine the phase evolution of the system. To this
end we solve the thermodynamic equations which express equilibrium between
the LY complex and, alternately, excess DNA and excess lipid. In this way we es-
tablish how DNA-DNA spacings d vary with the ratio p of charged lipid to DNA,
for each of several different lipid compositions (ratio of neutral to cationic lipid).
In agreement with experiment we find that for a lipid mixture of given compo-
sition, the spacings are constant throughout the low p range where the complex
coexists with excess DNA. In the high p range, where the complex coexists with
excess lipid, the spacings are nearly constant as well. Throughout the “single-
phase” region, however, where all the DNA and lipids are accommodated by the
complex, the DNA-DNA spacings increase linearly with p, as implied by material
conservation and confirmed by experiment. This region is found to include the
(very) special — “isoelectric” — point at which the total charges carried by DNA
and lipid are equal. At the isoelectric point the free energy of the complex is min-
imal. We show, both theoretically and experimentally that the isoelectric point
is associated with maximal counterion release (see Sec. 1.6). The association of
DNA and lipid is thus shown to be (almost solely) driven by the gain of entropy

resulting from the release of counterions.

All of the above results can be qualitatively accounted for by a simple “box”
model described in Sec. 2.4, in which the electrostatic effects enter only via the
“excess charge” which measures the extent of deviation from the isoelectric point.
In this way one can understand the constancy of DNA-DNA spacings at low and
high p, i.e., at large deviations from the isoelectric point, directly in terms of the
mutual repulsions between like-charged DNA strands or lipid bilayer surfaces,
respectively. We include in this final section, a brief account of the theory of
the LY complex presented independently by Bruinsma (1997), who interprets the
observed structural evolution (d vs. p) via approximate analytical solution of the
nonlinear PB theory. His analysis of the free energy (which is restricted to low
cationic lipid contents) is based on a physical picture which is quite similar to
ours; his conclusions regarding the phase evolution of the system are somewhat
different. We also discuss there the quite different approach suggested by Dan
(1996; 1997), who — in contrast — ascribes the preferred d spacing at low p to a
competition between short-range electrostatic repulsions and longer-ranged DNA-

DNA attractions mediated by the elastic deformation of the bilayer membranes.
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2.2 Theory

In this section we outline our model for calculating the free energy of the LY com-
plex, and derive the thermodynamic relationships dictating the complex structure
and phase behavior in lipid-DNA solutions, as a function of the overall lipid to
DNA ratio and the CL/HL lipid composition.

2.2.1 Model

Ignoring edge effects, we shall treat the complex as an infinite periodic lamellar
array consisting of alternating lipid bilayers and DNA monolayers, as schemati-
cally illustrated in Fig.2.1. The DNA strands are assumed to be infinite, parallel
and equi-distant rigid rods thus forming a one-dimensional (1D) lattice.

As noted in the previous section, the existence of a well defined inter-axis
distance d (which depends on lipid composition and lipid to DNA ratio) has
been unequivocally confirmed by X-ray diffraction studies (Radler et al., 1997).
Theoretical support for this finding will be given in the following sections. The
naked DNA strands in solution will be treated as infinite cylindrical rods and the
liposomal membranes as perfectly planar infinite bilayers.

Modeling DNA strands as infinite rigid rods was discussed in Sec. 1.4. Here,
the approximation is justified in view of the fact that the DNA persistence length
(I, ~ 500A) is significantly larger than all the other relevant length scales in
the LY complex; namely, the DNA radius Rp ~ 10A, the inter-axial distance
d ~ 20 — 70A, the thickness of the inter-bilayer water gap h ~ 25A, the bilayer
thickness w &~ 30A, and the average linear dimension of a lipid head group a'/?,
where a ~ 70A” is the average cross sectional area per lipid molecule in the
membrane. It should be noted that any curvature fluctuation of an individual
DNA strand within the monolayer implies a change in d extending over a distance
of order l,. From the calculations presented in the next section it will become
apparent that such changes involve an electrostatic free energy penalty of many
kgT’s, indicating that curvature and inter-axis fluctuations in the complex are
quite unlikely.

In general, the DNA lattice may induce membrane curvature modulations
(with a maximal amplitude of Ay), as schematically illustrated in Figs. 2.1 and
2.2. However, an assumption that will be made throughout this chapter, that the
lipid bilayers are perfectly planar, i.e., Ay = 0, and their thickness, w, is constant
and independent of their lipid composition. For lipid bilayers of high bending
rigidity (Helfrich, 1973) the modulations are expected to play a minor role in
determining the complex stability. On the other hand, when “soft” bilayers are

involved in complex formation, these curvature modulations may become increas-
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ingly important, possibly leading to structural phase transformations involving,
say, the inverted hexagonal/honeycomb states mentioned in Sec. 2.1 (Koltover
et al., 1998). We return to this point in the next chapter, where we will consider
the elastic degree of freedom, both within the LS phase, and in the transition to
the honeycomb (H{;) phase. The assumption of constant w is justified for bilayers
whose CL and HL components are of similar chain length. This is the case for
the neutral lipids DOPC and DOPE, as well as the cationic lipid DOTAP, mix-
tures of which are known to form lamellar complexes with DNA (Rédler et al.,
1997; Rédler et al., 1998; Salditt et al., 1997; Koltover, 1998). The extension
of our model to cases where w varies with the lipid composition is, in principle,

straightforward.

The negative charges on the DNA surface are densely spaced, see Sec. 1.4;
the average spacing between these charges along the axis of B-DNA is [ = 1.7A.
We shall assume that these charges form a continuous and uniform charge dis-
tribution over the DNA surface which will be regarded as a perfect cylindrical
envelope. This approximation is supported by numerical studies revealing that
the electrostatic potential around the DNA surface is no different from that pro-
duced by a continuous charge distribution, except for a narrow region in its
immediate vicinity (Wagner et al., 1997). In all our calculations we shall use
Rp = 10A for the radius of this cylinder, implying a uniform charge density
o~ =e/2nRpl ~ 0.15 Cm™2, corresponding, approximately, to one elementary

charge, e, per 110A%,

We shall also assume that the CL. and HL constituting the membrane are ide-
ally mixed. In the free bilayer this implies, on average, a uniform and continuous
charge distribution. The charge density is 0™ = e¢/a, where ¢ is the mole frac-
tion of the cationic lipids and a is the average area per lipid head group. On the
other hand, in the bilayers of the complex we shall allow for spatial modulations
of the cationic charges, while assuming that ideal mixing applies locally. In all
calculations we shall use a = 704 (implying 0~ = o when ¢ = 0.65) for both

lipid components, in both the free and the complexed bilayer.

Finally, the naked DNA, the free lipid bilayer and the lipid-DNA complex will
be treated as macroscopic phases, i.e., we ignore the free energy contributions as-
sociated with their overall translational and rotational degrees of freedom. These
free energies are on the order of 1kgT per particle, much less than their “internal”

(electrostatic and mixing) free energies.
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Figure 2.2: Schematic representation of one quarter of the complex’s unit cell. The
Poisson-Boltzmann equation is solved in the aqueous interior subject to boundary con-
ditions appropriate for surfaces I — V| (see text).

2.2.2 Free energies

We define a unit cell of a complex as a box of dimensions d x b X s, where d is
the distance, along the x axis, between two neighboring DNA strands, b = h + w
is the distance between two bilayer midplanes along the y axis, and s is the
“depth” of the unit cell along the z (the DNA axis) direction. Since the complex
is translationally invariant along the 2z axis the calculation of its free energy is a
2D problem, and the choice of s is arbitrary, Fig. 2.2.2 Unless stated otherwise,
our numerical results will be reported for s = 1A. For the numerical evaluation
of the complex free energy it is convenient to consider only one quarter of a unit
cell, as shown in Fig. 2.2. Note, that in this cell the region accessible to water

and ions is limited by the membrane and DNA strands.

Formation free energy

Let fc = f(¢,d,h) denote the (charging) free energy of one unit cell of the
complex, where ¢ = ¢ is the average mole fraction of the cationic lipid in
the complex. Alternatively, we may interpret fo as the free energy of a DNA
strand (of length s), when incorporated in a complex characterized by ¢¢,d, h
plus the free energy of a complexed bilayer segment containing n = 2s x d/a
lipid molecules. In the limit d — oco,h — oo the complex disintegrates into
well separated DNA and lipid bilayer. Thus, fc = f(¢,d — oco,h — o0) =

2We stress here that all solutions to the PB equation throughout the whole of this work are
purely 2D in nature. No modulation along the remaining axis are considered. This makes s
an irrelevant parameter for most purpouses. We define it here soley for cases where different
calculation used diferent s values as standards. The reader will be explicetly warned when the

value s is changed.
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fo+ fe(®) = fp+ de(qb). Here fp is the free energy of a naked DNA rod of
length s and fg(¢) is the free energy of a bare bilayer segment of area s x d;
f3(¢) = fg(¢)/d. Henceforth, all energies denoted as are the free energy per
unit length of a strip of width s. (fg/n = (a/2s)fp is the free energy per lipid

molecule in the bilayer.) The difference

Afo(g,d,h) = fo(d,d,h) = fo — dfp(9) (2.1)

is the free energy change associated with complex formation from its separate,
DNA and lipid bilayer, components. A complex characterized by ¢,d and h is
thermodynamically stable only if the formation free energy is negative, A fo < 0.
We now turn to a more detailed discussion of the terms appearing on the right
hand side of Eq. 2.1.

Complex

As we do not allow for curvature or thickness modulations of the lipid layers, fc
involves only two contributions: the electrostatic (charging) free energy of the
complex and the (in-plane) lipid mixing entropy. The negatively charged DNA
grid can induce a spatial modulation (or “polarization”) of the cationic lipid
charges (along the x axis), so as to minimize the electrostatic energy of the sys-
tem. However, this tendency is opposed by the lipid “demizing” entropy penalty
associated with any deviation from a uniform distribution. Thus, the extent of
lipid demixing (charge modulation) is governed by a delicate interplay between
these two opposing tendencies; the electrostatic and lipid mixing contributions to
the complex free energy are strongly coupled. Thus, the lipid composition profile
n(x), the electrostatic potential in the complex interior ¢(z,y), and the actual
value of the complex’s free energy, fo(¢,d, h), must be determined by minimizing
the total free energy functional, which includes both the mixing and electrostatic

terms, namely (using the mks convention),

fo = ("’B—T) JELLRE

+ bt [

n+lnn—++n_lnn—_—(n++n_—2n0)] dv

no Ny
kBT/ [ n 1—77]
+ In— + (1 —n)ln ds. 2.2
o LT I (2.2

The first term on the right hand side of this equation is the electrostatic
energy; ¢ = ep/kgT is the scaled (dimensionless) electrostatic potential, and

€ = €p€, where €, is the dielectric constant of the solution and ¢y is the permittivity
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of vacuum (Verwey & Overbeek, 1948). The integration is over the volume of the
unit cell. We use ¢, = 78 for the aqueous regions.

The second term accounts for the translational (“mixing”) entropy of the
mobile ions in the complex interior, relative to their entropy in the bulk solution,
with ny = n_ = ng; ny = ni(x,y) denoting the local concentrations of mobile
ions in the complex. (We assume a 1:1 electrolyte solution.) The last term
accounts for the mixing entropy (penalty) of the charged and neutral lipids in the
membrane plane, relative to their entropy in the (ideally, evenly mixed) uncharged
membrane. The integration is over the membrane surface, (surface V in Fig. 2.2).
Locally, i.e., at any z, the lipids are assumed to be ideally mixed, with n = n(x)
denoting the local mole fraction of the charged lipid. (Recall that the average area
per lipid in the membrane is assumed to be independent of the lipid composition.)

Note that the free energy functional in Eq. 2.2, which we shall treat as the
total free energy of the system, does not include any contribution from the inner
(hydrophobic) regions of the membrane and the protein. Namely, we disregard
the dielectric properties of these regions, treating them as decoupled from those
of the electrolyte solution (and charged surfaces). Formally, this decoupling is
equivalent to setting € = €;,; = 0 within the hydrophobic regions (i.e., in the
interior of the DNA and the lipid membrane). Qualitatively one expects that
because any molecular polarization within the hydrophobic regions provides the
system with an additional degree of freedom, the interaction free energy between
the particles will be lower for all ¢;,; > 1. In fact, as has been shown in Sec. 1.3.5
the effect of setting ¢;,,; = 0 can be estimated, and for the case discussed here,
the system is indeed in the decoupled regime. Detailed numerical studies, based
on solving the PB equation in the electrolyte solution and the Laplace equation
within the (charge-free) hydrophobic regions corroborate this notion. Yet, the
magnitude of these effects for €;,; ~ 2 (as appropriate for hydrophobic media)
are negligibly small for all relevant interparticle separations (Carnie et al., 1994;
Carnie & Chan, 1993).

The local lipid composition must satisfy the conservation constraint

B fsvndS
N [, dS

where ¢ is the mean mole fraction of the charged lipid in the complex.

¢ (2.3)

Functional minimization of fo with respect to n.,n_ and 7, subject to the
conservation constraint, Eq. 2.3, yields the following results. For the mobile
ion distributions one finds the usual Boltzmann distributions, ny = ngexp(F),

which upon substitution into Poisson’s equation yield the PB equation,

V2 = k% sinh ¢, (2.4)
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where k7! = (eoe,kpT/2ne?)'/? = Ip is the Debye length.
For ot (z) = en(x)/a, the local charge density on the membrane, we obtain
o~ ()
B ETES
where 8 = aekpT/e?, and X is the Lagrange multiplier conjugate to the charge

;= —fVy-n (2.5)

conservation constraint, Eq. 2.3, and 1 is the unit vector normal to the boundary
(pointing into the dielectric medium). The second equality in Eq. 2.5 is Gauss’
law, relating the local surface charge density at = to the electrostatic potential at
the membrane surface. This equation represents one of the boundary conditions
(boundary V in Fig. 2.2) on the electrostatic potential and must be solved simul-
taneously, and self-consistently, with the PB equation, Eq. 2.4. A similar type of
boundary condition appears in the “charge regulation” model for the electrostatic
interaction between colloidal particles involving ionizable surface groups (Ninham
& Parsegian, 1971; Carnie & Chan, 1993; Carnie et al., 1994). In these systems,
the equilibrium surface charge is adjustable, and determined self-consistently by
the interplay between the chemical dissociation reaction and the electrostatic
interaction between the charged surfaces. Note that for our model of the LS
complex Eqs. 2.4, 2.5 are 2D. Equations reminiscent of these were derived for
other systems using a similar approach, as noted in Sec. 1.2.1.

The other boundary conditions, pertaining to domain boundaries I-IV in
Fig. 2.2, are less intricate. At the DNA surface (domain boundary IIT), the bound-
ary condition is that of constant charge density, =V -t = ec ™ /ege, kT . For do-
main boundaries I, IT and IV we have, by symmetry, 0v/0z |;= 0, 0v/dy |1;= 0,
0vY/0z |rv= 0. The numerical procedure for solving the PB equation (Carnie
et al., 1994; Stankovich & Carnie, 1996; Houstis et al., 1985) and for evaluating
A, ¢ and the free energy of the complex is outlined in Appendix B.

Bare bilayer, naked DNA

The free energy of the bare bilayer is a sum of mixing and electrostatic con-
tributions, fp = f§ + f5, both depending on the lipid composition ¢. (By
symmetry, at equilibrium, the bilayer is planar and the lipid compositions in its
two monolayers are identical.) The mixing entropy contribution (per unit length
of a bilayer strip of width s) is

f8' = 2s/a)kpT [pIn¢ + (1 — ¢)In(1 — ¢)] (2.6)

For f7’ we can use a closed form expression for the electrostatic free energy of a

charged planar surface (Lekkerkerker, 1989):

o = 2 (25/a) kT & 1%‘1 Fin(p+q) 2.7)
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Figure 2.3: The free energy per molecule in the bare lipid bilayer (of area a = 70A° per
molecule) as a function of the cationic lipid mole fraction. Also shown is the charging
energy fp = afp/2nRps of a naked DNA of surface area a. The solid and dashed
curves correspond to Ip =10A and 50A, respectively

with p =2¢lpm/(ka) and ¢ = \/p?> + 1; g = €*/(4 7 € kgT) is the Bjerrum
length (see Sec. 1.2). Note that, with the identification of lgc = e/27molp as

1 as the Debye length, p is

the Gouy-Chapman length (0 = e¢/a), and Ip = Kk~
recognized to be the ratio of fundamental lengths, p = Ip/lac.

In Fig. 2.3 we show the bilayer free energy per molecule, fg/n = (fF+ f§)/n,
as a function of the lipid composition, ¢p, for two values of the Debye length,
Ip = 50 and 10A. It should be noted that the electrostatic (charging) energy is a
monotonically increasing function of ¢p; the shallow minimum of fz at small ¢p
is due to the lipid entropy contribution, fl’?, (whose minimum is at ¢p = 1/2).
Also shown in this figure is (the constant) energy for charging a naked DNA of
length a/27Rp, corresponding to a DNA surface area of a = 70 A®. This energy
is calculated by the numerical solution of the PB equation for an isolated charged
cylinder in aqueous electrolyte solution. The results shown in Fig. 2.3 will later
be used for calculating the lipoplex formation free energy and the phase diagram

of the system.

2.2.3 Phase behavior

Consider an aqueous solution containing DNA strands of total length sD, N*
cationic lipids and N° neutral (helper) lipids; N* + N° = N . The total length
of DNA associated in complexes will be denoted as sD¢. In general, the total
length of DNA in the system, sD will be equal or larger than sDq. Note that D¢
is also the number of unit cells in the complex. The length distribution of the
DNA strands is irrelevant as both the naked DNA and the complex are treated
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as (immobile) macroscopic phases.

As the concentration of monomeric lipids in solution is generally negligible,
we can safely assume that all lipids are organized in bilayers which, in both the
free and complexed states, are assumed to be planar. We find it convenient to
express the total bilayer area, A = Na, in the form A = sL, so that L is the
total “length” of the bilayer, if regarded as a strip of width s. We shall use
Lc = xL and Ly = (1—x)L to denote the total length of the complexed and free
bilayer, respectively. Note that Lo = dD¢s where d is the distance between DNA
strands in the complex. Also, using NZ to denote the number of cationic lipids
in the complex, we define L}, = (a/s)N{. Similarly, we define L} = (a/s)Ng,
LY = (a/s)N2, LY = (a/s)N% and L5 + L} = LT, L% + LY = L°3 The mole
fractions of cationic lipid in the complexed and free bilayer are given by ¢ =
N{/Ne = L /Le and ¢ = Nt /Ng, respectively. These two lipid compositions
are generally different, but related to each other by the conservation condition

(“lever rule”):

X¢c + (1= X)dp = ¢ (2.8)

where ¢ = N* /N = L*/L is the overall mole fraction of cationic lipid in solution.

Finally, we introduce the (dimensionless) quantity

p=N*/(sDJl) = (SL/D)(l/a) (2.9)

expressing the ratio between the total number of immobile (or surface) positive
(i.e., lipid) charges and negative (DNA) charges in the system. Of particular
interest is the “isoelectric point”, p = 1. Experiment shows, (at least for ¢ ~ 0.5)
that at this point all the lipids and DNA in solution are involved in complex
formation (Rédler et al., 1997). In the next section we shall show that this
result holds for a wide range of lipid compositions ¢ and, furthermore, that the
isoelectric point corresponds to the minimum of the complex free energy fc.

Experiment also shows that upon increasing the overall lipid to DNA ratio
(L/D), at constant lipid composition (¢), the system evolves through three dis-
tinct regimes (see Fig. 2.4):

i) When L/D (equivalently p o< L/D) is small the system is bi-phasic; the
solution contains lipid-DNA complexes which coexist with excess, naked, DNA.
Thus, in this regime, D > D¢ whereas Lo = L (no free bilayer). The DNA-

DNA distance in the complex is constant, d = d;(¢), independent of p as long as

3Note that most of the variables introduced here represent the same quantity in the differnt
phases: Complex, free DNA and bare lipid Bilayer membarnes. Experimentaly, we are in
command of only the overall compositional degree of freedom, in our notation these will be ¢,
the total mole fraction of charged lipids in solution p, the lipid to DNA charge ratio. The rest

is determined through thermodynamic equilibrium.
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Adding lipid (increasing p)

Figure 2.4: Schematic illustration of the phase evolution of LS complexes (see text for
details).

p < p1(¢) which marks the onset of the next region. Once p = p; all the DNA is
complexed so that D¢ = D = L/d; and hence, from Eq. 2.9, p; = ¢d;(I/a). In
general p; < 1.

ii) Between p; and a certain p, = py(¢) > 1 the system is one-phasic: all
the DNA and lipid are involved in complex formation. Thus, Lo = L, De = D,
and hence d = L/D = (a/l)(p/¢) increases linearly with the lipid/DNA ratio;
from d, at p;, through d; = d;(¢) = (a/l)/¢ at the isoelectric point (p = 1),
to dy = dy(p) at pa(d) = bdy(l/a), which marks the onset of the third region.
In general, p, > 1. Upon increasing p beyond the isoelectric point p = 1, the
added lipids are first accommodated by the complexes, thereby d increases, and
the condensates become “positively overcharged”.

iii) For large L/D (p > po) the system is again bi-phasic, containing complexes
which coexist with an excess bilayer phase; Do = D, Lo < L. In this region the
system possesses an extra thermodynamic degree of freedom, namely, the lipid
composition of the complex, ¢¢, (or, equivalently, ¢ which is related to ¢c by
Eq. 2.8). Thus, unlike in region (i), ¢¢ (hence ¢5) need not be equal to ¢. In
other words, for any ¢ and L/D, the system will adjust both d and ¢¢ so as to
minimize its total free energy. Indeed, we shall see that in the excess bilayer
regime both ¢¢ (hence ¢p) and d vary with p. It should be noted, however, that
experimentally, d ~ dy(¢) appears to be independent of p in region (iii). This
result will be discussed in more detail in the next section.

In principle, the system may also exhibit three-phase (complex/bilayer/DNA)
coexistence as well as bilayer/DNA coexistence (see Chap. 3). However, these

conditions correspond to very narrow regions of the phase diagram (low ¢ values)
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where the complexes are either unstable or only marginally stable. We shall thus
focus on the three stage scenario outlined above.

Our analysis involves three possible phases: free DNA, free bilayer and com-
plex. The first two may be regarded as incompressible condensed phases. On the
other hand, the complex is “compressible” because both the DNA-DNA spac-
ing, d, and the inter-bilayer spacing, h, may vary with ¢ and L/D. However,
both experiment and our calculations (next section) show that in general only d
varies significantly with ¢ and L/D, whereas h is essentially constant, h ~ h*.
In other words, for most ¢c and d, the complex free energy fc(¢c,d,h) has
a narrow and deep minimum at h*. In Sec. 2.3.1 we show how this minimum
is a result of two opposing forces: the electrostatic and the short range hydra-
tion or other forces associated with excluded volume. Thus, we can safely treat
fe = felpe,d) = fo(de,d, h = h*) as a function of only two variables.

For given ¢ and L/D (and given [p) the number and nature of the phases in

solution are determined by the minimum of the total free energy

F = (D - D¢)fp + Defeléc,d) + (L — dDc) fz(5) (2.10)

with respect D¢, d and ¢¢, (¢ depends on these three variables through Eq. 2.8).4

Setting Do = L/d, ¢c = ¢ in Eq. 2.10 and minimizing F with respect to d,
we find the equilibrium condition for region (i),

fc(é,d)—d<%>$—fl): (%)a—fﬁ):o (2.11)

This equation determines the equilibrium inter-axis distance in the complex,

d = di(¢), in the presence of excess free-DNA. Based on this equation we an-
ticipate that d; will be smaller than the “optimal” value, d* = d*(¢), corre-
sponding to the minimum of fo(¢@,d). This follows from the fact that the free
energy of a DNA strand in a stable complex must be lower than in solution and
hence fp — fo(d, @) > 0, which means (0fc/0d)4—q, < 0. Physically, the “over-
crowding” (d; < d*) of DNA strands in the complex results from the partial
release of mobile counterions into solution upon bringing more DNA charges into
contact with the cationic lipid charges. When d = d; this osmotic-like pressure
of the DNA to enter the complex is balanced by DNA-DNA repulsion within the
complex (the latter increases as d decreases).

In region (ii), where all the DNA and lipids are associated in complexes

F = Dfc(d,¢) and d = L/D increases linearly with the lipid to DNA ratio.

4Note, that contrary to what may be inferred from Eq. 2.10, the scenarios considered in
this chapter will never include a free phase coexistence. We shall return to this point in the
next chapter, where we show that theoretically a three phase coexistence is possible, it is

experimentally hard to obtain.
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(The linear increase reflects our assumption that the bilayer is planar and lat-
erally incompressible.) At some point within this region, generally very close to
p = 1, the complex free energy is minimal (i.e., d;(¢) ~ d*(¢)). The uptake
of bilayer into the complex continues beyond this point, as long as the added
lipids enjoy lower free energy in the complex as compared to that in the free
bilayer. Eventually, at some d = dy(¢) > d* (and p = py(¢) > 1) inter-bilayer
repulsion becomes sufficiently large to forbid further accommodation of bilayer
in the complex, marking the onset of region (iii). To support this qualitative
description let us first consider the hypothetical case of “blocked lipid exchange”
where ¢p = ¢c = ¢. (This limit could perhaps be realized experimentally, as a
transient state, if the rate of lipid exchange is small compared to that of complex
formation.) Setting Do = D, ¢c = ¢p in Eq. 2.10 and minimizing F' with respect

to d we find,
9\ w o
(% )q_&—fB(qb) =0 (2.12)

which determines dy = dy($) for the case of blocked exchange. For this special
case, let po(¢) denote the value of p at the boundary between regions (ii) and
(iii), corresponding to x = dD/L = 1 in Eq. 2.8. From Eq. 2.12 it follows that
d = dy(¢) is constant throughout region (iii) (p > pa(¢), or 1 > x > 0). Since
dy (@) is also the maximal d in region (ii) it follows that py(¢) = ¢dy(I/a). Finally,
since the bilayer charging energy, fB(gz_S), is positive, it follows from Eq. 2.12 that
dy > d*.

In the more general case of free lipid exchange the values of d, ¢ and ¢p in the
bilayer-complex coexistence region are determined by the equilibrium conditions
(OF/dd) = 0 and (0F/d¢c) = 0.5 Noting that in this region D¢ = D and
(dD/L)¢c + (1 —dD/L)¢p = ¢ (see Eq. 2.8), we obtain,

ofc) _ fs

(56c), = 56, (2:13)
dfc - _ df5

(%5~ Fotow = o= n) 332 .14

We could rewrite the last two equations in a slightly different form in terms

of fo = fc/d, the free energy per unit length of the complex, instead of, fc, the

5Do not let the large number of introduced variables mislead you. In fact, when the system
if bi-phasic containing complexes coexisting with free bilayers, there are only three variables
that completely define the state of the two phases. These are d and ¢¢ for the complex phase,
and ¢p for the free bilayer. The lipid to DNA charge ratio in the complex phase is simply
related to d and ¢¢ through dl¢c/a. Furthermore, the free energies of type f that appear in

all the coexistence equations are per unit length of the complex.
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free energy per unit cell. Then, if d were constant (“incompressible complex”),
Eqgs. 2.13, 2.14 would reduce to the familiar ‘common tangent construction’ for
fc and fB, representing the coexistence conditions of two incompressible binary
mixtures. If this were the case we would also find that ¢ and ¢p are independent
of x. However, since the complexes are not incompressible, both d and ¢¢ (and

hence also ¢) may vary with x, as will be shown in the next section.

2.2.4 Counterion release

Consider again an aqueous salt solution of volume V" at temperature 7', containing
double stranded DNA of total length sD and N = Nt + N lipid molecules.
We denote the concentration of fixed negative (DNA) charges in the system as
M~ =sD/IV. Thus, ¢ = N*/N and p= N*/V M.

Let m§ and m® denote the excess numbers of counterions within a unit cell

relative to the bulk solution. Thus,

m§ = s// dzdy [ng(z,y) — no (2.15)

where n9(z,y) denote the local concentrations of counterions within the complex.
The integration extends over the cross-sectional area, d x h, of the unit cell;
h ~ 26A denoting the distance between apposed bilayer surfaces. We calculate
the local ion concentrations using n¢ = ngexp(Fe/kpT), where ¢ = 1(z,y)
is the electrical potential. Again, for given p, ¢ and ny we obtain ¢ by solving,
numerically, the nonlinear PB equation for the unit cell parameters.

For an isolated lipid bilayer, charge neutrality implies that the surface excess
number of counterions is m” = 2sd [dy[n®(y) + n®(y) — 2ng] = 2sdp/a; for
monolayer area equal to that in a unit cell. The excess number of counterions
around a DNA segment of length s is mP = s/I. The number of counterions
released into solution upon complex formation is Am = (m? —m9)+(m”®-m%) =
(14 2dbd/a) — (mS +m®) = 2(1 —m), per unit cell. (The last equality reflects
charge neutralization, m” +m® = m® +m¢.) The corresponding (small) change
in free ion concentration is 2Any = K Am where K is the number of unit cells,
per unit volume. As an operational definition of the extent of counterion release

we use the quantity

(N*/VY+ M- (Nt/V)+ M-

¢ = (2.16)

The first expression for £ is measurable while the second can be calculated using
PB theory (and the thermodynamic coexistence equations), enabling comparison

of theory with experiment.
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Figure 2.5: Schematic illustration of cationic liposomes and DNA condensing into a
lamellar lipid-DNA complex. Counterions are released into the excess water phase

In the following section, we present & as a function of p for a low salt solution
(4mM NaCl, corresponding to a Debye screening length of I, = 50A) contain-
ing DNA and an equimolar (¢ = 0.5) CL/HL mixture. The phase boundaries,
p1 and po, were determined, as described in the previous section, by solving
the thermodynamic coexistence equations. It can be shown theoretically that
¢ exhibits different functional dependencies on p in the three regimes of the
phase diagram. When the system is monophasic (p; < p < po), K = D/V
and hence £ = 1 — [(m$ + m%)/ [s(1+ p)]. This expression is also valid for
p > po, i.e., when complexes coexist with an excess bilayer phase, implying a
linear decrease of £ with 1/p in the limit p — oo. When p < py, i.e., when
complexes coexist with naked DNA, K = N*a/2d,s¢ = IN*/sp, and hence
€=1—1(mY" +m")/s(pi(141/p)), implying £ ~ p as p — 0.

In the next section, these theoretical predictions will be compared directly
with experimental results (Wagner et al., 2000). The experiment is schematically
illustrated in Fig. 2.5. CL-DNA complexes were formed spontaneously upon mix-
ing cationic vesicles and DNA. At high lipid-DNA concentrations the complexes
are well above micron size and could easily be separated from the aqueous phase
by centrifugation and filtration. Subsequently the number of released counte-
rions was determined by the increase in conductivity of the supernatant. The
concentration of free DNA in the supernatant was also measured by optical ab-
sorption. The experiments were carried out for 4mM NaCl solutions, enabling

direct comparison with theory.®

2.3 Results and Analysis

Following the discussion in the previous section, we shall first present and analyze

the numerical results for the free energy and structure of an isolated DNA-lipid

6The full experimental detail can be found in (Wagner et al., 2000)
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complex and then discuss the phase behavior of the solution. Finally, we will
present, the theoretical results for the extent of counterion release, and compare
them with the experimental results. Comparison with detailed published data
for LY complexes will be presented for several systems, all composed of a solu-
tion containing a mixture of cationic (DOTAP) and nonionic helper (DOPC or
DOPE) lipids for several values of ¢, and linear (either A-phage or plasmid) DNA,
without added salt (Rédler et al., 1997; Rédler et al., 1998; Koltover, 1998). The
bulk concentration of mobile ions in this system is low, but unknown exactly (as it
is volume dependent). Thus, in most calculations we have used ng ~ 4 x 1073M,
corresponding to a Debye length I, = 50A. Very similar properties and phase
behavior of the complex were found for larger values of [p. Partial results will
also be presented for I, = 10A, corresponding to physiological salt concentrations
(ng = 0.1M). These calculations were also found to be in agreement with exper-
imental results where salt was added to solution (Radler et al., 1998; Koltover,
1998). In all the calculations reported below we have used Rp = 10A for the
DNA radius and a = 70A” for the average area per (both cationic and neutral)

lipid head group.

2.3.1 Complex structure and stability

The electrostatic (charging) free energy per unit cell of the complex, fc, is shown
as a function of d for several values of ¢¢ in Fig. 2.6, (for s = 1A,Ip = 50A).
Similarly, Fig. 2.7 shows fs as a function of ¢ for several values of d.

All the results shown in Figs. 2.6 and 2.7 were obtained using h = h* = 264,
corresponding to a minimal distance of 3A between the DNA and bilayer surfaces.
This is the value of h* observed experimentally for the LS complex by Rédler et
al. (1997). It should be noted, however, that A* is larger than the minimal value
of the inter-bilayer spacing, Amin = 2Rp = 20A. In fact, for most values of ¢¢,
our calculations show that the electrostatic free energy of the complex decreases
monotonically as h decreases, including the region h* > h > hy,;,. Thus, we
treat h* ~ 26A as the effective range of a “hard-wall” potential, representing
the short range repulsive forces arising from hydration, protrusion and other
excluded volume interactions (Israelachvili, 1992; Israelachvili & Wennerstrom,
1990). Subject to this condition we find that for all ¢c larger than ~ 0.2 the
minimum in fc(¢pc,d, h) is always at h = h*, regardless of d. For very low values
of ¢¢ (less than 0.2) we find, for low d’s, that the optimal value of h increases
as d decreases, as demonstrated for ¢~ = 0.15 in the inset to Fig. 2.6. Note,
however, that for these low ¢c’s the minimum of fo occurs at large d*’s where,

again, h = h*. More generally, our conclusions regarding the complex structure
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Figure 2.6: The free energy per unit cell of the complex as a function of the
DNA-DNA spacing, for several different mole fractions of the cationic lipid: ¢ =
0.23(e),0.39(M),0.50(V¥),0.62(#),0.78(A). The inset shows the optimal inter-bilayer
distance, h*, vs. the optimal DNA-DNA spacing, d*, for a low lipid composition,
¢c = 0.15(e). For all ¢¢ larger than =~ 0.2 h* is constant (H).

and stability, as well as the phase behavior of the system are not sensitive to

small variations in A*.

In Fig. 2.6 we see that the optimal DNA spacing in the complex, d*, is a
decreasing function of ¢o. Similarly, Fig. 2.7 shows that the optimal complex

composition ¢, is a decreasing function of the DNA-DNA distance.

Qualitatively, these results are easily understood. The minima in the electro-
static free energy are expected to occur when the fixed negative charges on the
DNA surface are balanced by the same number of positive charges on the bilayer
surface, i.e., at the isoelectric point. At this point the complex will remain elec-
trically neutral even if all the mobile ions in its interior would be released into
the bulk solution, thus increasing their translational entropy and consequently
lowering the free energy of the system. Of course, some counterions will always
remain within the complex water gaps, as dictated by the bulk value of their
chemical potentials. However, the concentrations of these mobile ions will be
much smaller than in the diffuse layers near the surfaces of the non-complexed
DNA and membrane. Now, the total charge on the bilayer surface is proportional
to d X ¢ whereas the total charge on the DNA surface is constant. Thus, at the
isoelectric point d = dj(pc) = (a/l)/oc, explaining the decrease of d; ~ d* with
¢c. The inset to Fig. 2.7 shows how d; and d* vary with ¢. The two curves are
essentially identical, confirming that the complex free energy is, indeed, minimal

at the isoelectric point where counterion release is maximal. Thus, hereafter, we
set dy = d*.
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Figure 2.7: The free energy per unit cell of the complex, as a function
of the lipid composition, for several values of the DNA-DNA spacing: d =
23(e),33(M),43(#),73(A),93(V)A. The inset shows how the optimal spacing, d*
(dashed line) and isoelectric spacing, d; (solid line) vary with the lipid composition
in the complex, revealing that d* and dj are essentially identical.

Figs. 2.6, 2.7 reveal also that the minimum value of the complex free energy
I& = folde, d*(pc)) varies rather weakly with ¢. More generally, we note that
upon changing ¢ (or d) the complex can change its d (or ¢¢), i.e., “cross” to
a neighboring free energy curve, without significantly changing its free energy.
This ability of the complex, to change its composition (and d) at minimal free
energy cost, is manifested when complexes coexist with an excess bilayer phase,
in which case ¢¢ and ¢p are determined by the minimum of F' (rather than f¢),

as will be demonstrated in Sec. 2.3.2.

From the results in Fig. 2.6 it follows that inter-axis fluctuations, Ad = [{(d —
d*)®>)]'/?, in a complex of a given lipid composition are expected to be quite
small. The free energy cost of displacing a DNA strand of (minimal) length
l, = 500A by a small distance d — d* from its equilibrium position is § fo ~
2L, [fo(b,d) — fo(p,d*)]. Our calculations show that for, say, |d — d*| ~ 1A and
¢c = 0.5, this implies ¢ f¢ on the order of ~ 100kgT, indicating a negligible Ad.

When d < d* there is a net, negative, surface charge on the complex “walls”.
To ensure electrical neutrality, negative mobile ions must be brought from the
bulk solution into the confines of the complex, thus increasing the free energy
of the system. As d decreases the excess concentration of positive counterions
increases, for two reasons: the increase of the excess surface charge and the
decrease of the inner complex volume. The concomitant increase in the free
energy of the complex, and hence the effective DNA-DNA repulsion, is due to the

excess charging energy of the DNA surfaces, and the increased osmotic pressure
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Figure 2.8: The formation free energy of the complex, as a function of d, for several
values of the lipid composition, ¢c: 0.3 (dot-dashed line), 0.5 (dashed), 0.7 (dotted),
0.9 (full).

of the counterions within the complex interior. (A simple electrostatic model

accounting for this behavior will be described in Sec. 2.4.)

Similarly, as d increases above d* negative mobile ions must be brought into
the complex in order to balance the excess positive charge on the (lipid bilayer)
surfaces. However, unlike in the d < d* regime where counterion confinement
depends strongly on d, in this region counterion confinement is mainly due to the
finite bilayer spacing h. Since h is constant, fo is expected to increase linearly
with d (in the large d regime), as indeed observed in Fig. 2.6. The rate of this
increase, i.e., dfc/0d, is proportional to the electrostatic free energy per unit area
of the bilayer in the complex. This free energy is a sum of the bilayer charging en-
ergy, which increases with ¢ (see below), and the inter-bilayer repulsion energy.
For most values of ¢< considered here the complex conditions are those of the
“Gouy-Chapman regime” (Andelman, 1995) where the inter-bilayer interaction
energy is independent of the surface charge density. Thus, the ¢~ dependence of
the asymptotic slope of f¢ in Fig. 2.6 is mostly due to the charging energy of the

lipid monolayers.

These notions are confirmed in Fig. 2.8, which shows the formation free energy
of the complex, Afq, as a function of d for several values of ¢o. Note from
Eq. 2.1 that this quantity, which represents the net stabilization energy of the
complex, is obtained from fo after subtracting the charging energy of the non-
complexed DNA and bilayer. Thus, the steep variation of A f- at small values of
d is dominated by the strong DNA-DNA repulsion (counterion confinement) in
this regime. Similarly, the increase of Afq at high d’s (d > d*), is due, almost

exclusively, to inter-bilayer repulsion. From the discussion above it follows that
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Figure 2.9: Spatial modulations of the cationic lipid charge within a unit cell
of the complex. The local charge density profile, n(z) (between two neighbor-
ing DNA strands), is shown (full lines) for complexes of three lipid compositions:
e = 0.23,0.50,0.78. All complexes are at their isoelectric value, d* ~ 89, 41, 26 A
respectively. The horizontal (dashed) lines correspond to uniform charge densities.
The dash-dotted line, corresponding to ¢ = 0.5, shows the charge density profile in
a (hypothetical) complex where charge modulation (lipid demixing) does not involve
any entropy penalty. Note that in all but the highest ¢¢ case, cationic lipid is pushed
out from in between the DNA positions.

in this region 0Afz/0d should be nearly independent of ¢, as confirmed by
Fig. 2.8.

From the results in Fig. 2.8 we also conclude that stable complexes (A fo < 0)
can be formed for a wide range of lipid compositions. The complex stabilization
energies are on the order of a few kgT"’s per unit cell. For a “mesoscopic” complex,
containing DNA strands of total length on the order of, say, 1um this implies a
total stabilization energy of order 10*kzT.

In the previous section we have emphasized the fact that the lateral distribu-
tion of the cationic lipid charges in the complex need not be uniform. Indeed we
find that the actual charge distribution is polarized, reflecting a compromise be-
tween the tendency to minimize the electrostatic energy on the one hand, and the
unavoidable demixing entropy penalty on the other. The extent of spatial charge
modulations in the complex is demonstrated in Fig. 2.9. The figure shows the
variation of the local charge density n(z) between two neighboring DNA strands,
for complexes of three lipid compositions (high, low and equi-molar ¢c = (n(x))),
all at their isoelectric (i.e., optimal) value of d.

When ¢¢ is low, d* is necessarily large. To effectively screen the negative
DNA charges, cationic lipids must be displaced over a relatively large distance,
resulting in a dramatic charge modulation. On the other hand, when ¢ is large,

d is small, and the charge segregation is rather weak. In fact, in this case some of
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Figure 2.10: The DNA-DNA spacing d in the complex, as a function of the charged-
lipid to DNA ratio p, for several lipid compositions: ¢ = 0.3, 0.4, 0.5, 0.6, 0.8 (solid
lines). For each value of ¢, the dashed curve describes the variations in d for the case
of blocked lipid exchange. (a): Ip = 50A. (b): Ip = 10A.

the charged lipids are shifted from the immediate vicinity of the DNA towards the
center of the unit cell, as their optimal local concentration near the DNA strands
is lower than ¢c. (Recall, the charge density on the DNA surface corresponds to
one elementary charge per &~ 110 A%, The average charge density on the bilayer
surface is ¢¢/a which, for ¢pc = 0.78, corresponds to one elementary charge per
~ 90A2.) Intermediate, though substantial charge modulation is found for the
equi-molar lipid mixture, ¢ = 0.5. For this system we also show, for comparison,
the charge density profile in the hypothetical case that lipid segregation does not
involve a demixing entropy penalty. (Namely, we artificially ignore the lipid
mixing entropy contribution to fo. The PB equation is then solved subject to
the condition of constant electrical potential on the bilayer surfaces, as if they
were conducting sheets.) As expected, the charge modulation in this system is
still more dramatic than in the “real” complex. In all these cases, a clear tendency
for charge matching (thus maximal counterion release) opposed to some degree

by the lipid demixing penalty is observed.

2.3.2 Phase evolution

In Figs. 2.10a,b we show how d, the DNA-DNA spacing in the complex, varies
with p = ¢(I/a)L/D, the (scaled) charged-lipid to DNA ratio in solution. The
d — p plots in Fig. 2.10a were calculated for a solution of low salt content, [, =
50A, and several different lipid compositions ¢. Similar calculations are shown
in Fig. 2.10b for I, = 10A.

These calculations provide the most critical test of our model since d is an ex-

perimentally measurable quantity. The experimental d — p data points (adapted
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from (Rédler et al., 1997; Koltover, 1998)), which were obtained for solutions
of (p = 0.50.30.7) and without added salt, are shown in Fig. 2.11a,b. Also
shown in this figure are the theoretical curves corresponding to Ip = 50A for
¢ = 0.3, 0.4, 0.5, 0.6, 0.8 (for $ = 0.5 we also present curves corresponding to
Ip = 10A). The low-salt (Ip = 50A) results show reasonable agreement with
the experimental data. There is, however, a systematic difference, particularly
in the large p regime (region 4ii). In this region the experimental results for d
are generally intermediate between the theoretical prediction for the free lipid
exchange condition and the blocked lipid exchange case. A possible explanation
is that the experimental conditions are also intermediate between these two (the-
oretical) conditions considered. Also, there is some evidence that the DOTAP
and DOPC lipids pair together in the membrane (the positively charged DOTAP
binds to the negatively charged phosphate group on DOPC) (Bandyopadhyay
et al., 1999). This may lead to a necessarily smaller charge density modulation,
since some of the charged lipids are bound to neutral lipids, so that their (local)
charge density is at most e/2a (already rather close to the charge density on DNA
o ~¢/110A°,

The d — p “phase diagrams” in Figs. 2.10, 2.11 were calculated using Eq. 2.11
for region (i) (excess DNA), and Eqs. 2.13, 2.14 together with the lever-rule,
Eq. 2.8, for region (iii) (excess bilayer). Eq. 2.11 yields d; = d;(¢) for the
complex-DNA coexistence region (i), 0 < p < p1(d) = ¢d,(I/a).

In the one phase (complex) region (ii), d = L/D = (a/l)(p/$) varies linearly
with p. The slope, dd/dp, in region (ii) is inversely proportional to the charged

lipid mole fraction, ¢.

For region (iii) the calculation is a little more complicated because of the
additional, lipid composition degree of freedom. For each value of ¢, the solution
of Eqgs. 2.13, 2.14, 2.8 yields d, ¢¢, ¢p as a function of p in the complex-bilayer
coexistence region (iii). The onset of this region is at p, = ¢dz(¢)(I/a). At this
point all lipids are still complexed and hence y = dyD/L = 1 and ¢¢ = ¢, but
¢ # ¢. The inset to Fig. 2.11a shows how the (calculated) lipid compositions
in the complex and free bilayer (in the “excess bilayer” regime) vary with the
charged-lipid to DNA ratio. Asshown in the figure (and in more detail in Fig. 2.12
below), we generally find that at point py, ¢ < ¢. As p increases (hence y
decreases) we find, for all values of ¢, that d decreases monotonically, reaching
the asymptotic value d = d(¢) as p — oco. In this limit we have x — 0 and
hence ¢ — ¢, but now ¢¢ # ¢; in general we find that, asymptotically, o > ¢.
From Fig. 2.10 it is apparent that the change in d in region (iii), i.e., the difference

dy — dy is generally small, essentially negligible for low I, and/or large ¢.

The dashed curves in Figs. 2.10 show, for comparison, how d varies with p
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Figure 2.11: (a) The DNA-DNA spacing, d, as a function of charged lipid to DNA
ratio, p, for ¢ = 0.5; Ip = 50A (solid line), 10A (dashed line). The dots are the
experimental data of Rédler et al (1997). The inset shows the variation of lipid com-
position in the complex and free bilayer as a function of the charged lipid to DNA
ratio, for Ip = 50A. (b) DNA-DNA spacing as a function of p in series of theoreti-
cal and experimental results. The theoretical results correspond to (top to bottom)
é = 0.3, 0.4, 0.5, 0.6, 0.8; all results are for [p = 50A. The experimental results cor-
respond to: ¢ = 0.3(M),0.5(e),0.7(A) and for no added salt. [experimental results
adapted from (Koltover, 1998)].

in the limit of “blocked lipid exchange”. For this case, regardless of the value
of ¢, we see that the onset of region (iii) is postponed to a larger L/D ratio,
corresponding to p = p, > po and consequently d = dy > ds. For this special case
d = dy in region (iii) is independent of p. The difference between the cases of
“blocked” and “free” lipid exchange is particularly pronounced for small values
of ¢.

Qualitatively, the difference CZQ(Q;) — dy(¢) > 0, which reflects the role of
lipid exchange between the complex and the free bilayer can be explained as
follows. In the case of blocked exchange (¢p = ¢c = ¢) a free bilayer first
appears when the increase in fo upon adding lipids to the complex becomes
larger than the electrostatic free energy of these lipids when organized in a free
bilayer; see Eq. 2.12. This happens at p = po(¢) and d = dy(4). Suppose now
that, at this point, we allow for lipid exchange between the complex and the
bilayer. The bilayer (charging) energy can be significantly reduced by diluting
its charges with neutral lipids which can be imported from the complex, thus
making ¢ < ¢. This, in turn, implies an increase in the complex charge density,
from ¢ to ¢ > ¢. However, this change can be accommodated at a minimal free
energy cost since, simultaneously, the complex can adjust (lower) its d, to ensure

better electrostatic balance. The net result of this lipid-demixing process is an
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Figure 2.12: DNA-DNA distances in the complex at phase boundaries, as a function
of the overall lipid composition in solution; do and d, represent, respectively, the inter-
axial distance at the onset of complex-bilayer coexistence and in the limit of infinite
excess of bilayer. d» marks the onset of complex-bilayer coexistence for the case of
blocked lipid exchange. Also shown are the DNA-DNA spacing at the isoelectric point
(d*), and at the limit of the complex-DNA coexistence region (d).

increase in the amount of free bilayer. Although imaginary, this process clearly
accounts for the “carlier” appearance ( py < fa, da(@) < da(¢)) of bare bilayer in
a system where lipid exchange is free.

In Fig. 2.12 we show how ds and d,, the values of d at the boundaries of region
(iii), x = 1 and y = 0, respectively, vary with the overall lipid composition ¢.
The figure also shows d; (¢), the value of the inter-axis distance in the complex, at
the phase boundary between regions (i) and (ii). Two additional curves, marked
d*(¢) and dy(), describe the interaxis distance at the isoelectric point and the
boundary between regions (ii) and (iii) for the case of blocked lipid exchange,
respectively.

The dy and d, curves in Fig. 2.12 can be viewed as a “distillation diagram”,
prescribing the lipid compositions in complexes (of well defined d) and free bilay-
ers, when these two phases coexist in solution. More explicitly, consider a pair
of points, such as P and (), one on the dy and the other on the d., curves, both
corresponding to the same value of d. Then, the projections of these points on
the ¢ axis, ¢c = ¢p and ¢p = qSQ, give the lipid compositions of the complex
and free bilayer, for all values of ¢ in the range ¢c > ¢ > ¢p, provided the
inter-axis distance in the complex is d. This follows from the fact that, for this d,
the points ¢p and ¢¢ represent the unique solution of the coexistence conditions
Eqgs. 2.13, 2.14. The relative amounts of lipid in the complex and the bilayer, are
dictated by the “lever rule” yéc + (1 — x)¢p = ¢. In particular, when xy = 1
and hence ¢c = ¢ (and d = dy, point P) ¢p is the bilayer composition at the
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onset of region (iii); similarly, when x = 0 and hence ¢p = ¢ (d = do, point Q)
¢c is the asymptotic value of the complex composition. Experimentally it is of
course easier to follow a vertical line, ¢ = constant, such as that between points
P and R. Any point on this line dictates a given value of d and hence, as above,
a pair of coexisting compositions ¢¢, ¢p. Since ¢ is known, one obtains y using
the lever rule, and then the lipid/DNA ratio from p = d(¢/x)(I/a).

2.3.3 Extent of ion release

The experimental and theoretical results for £ are shown in Fig. 2.13a. Theoreti-
cally, we find that £ ~ 1, i.e. complete counterion release, at the isoelectric point,
p = 1. The experiments (Wagner et al., 2000) show maximal release at a slightly
larger value of p; the difference may be due to the finite size of the condensate
and by other experimental uncertainties. The fractional release of counterions
decreases monotonically on both sides of the isoelectric point. Within the one-
phase region (p; < p < py) the decrease is linear, reflecting the negative (p < 1)
and positive (p > 1) “overcharging” of the complex by fixed charges. For the
system considered, the calculations yield p; ~ 0.77 and p; ~ 1.3. At both p;
and p, there is a change in the slope of the & vs. p curve, corresponding to
passages between the one- and two-phase regions. At p; the change in slope is
hardly noticeable, both theoretically and experimentally. However, the complete
complexation of DNA at p; is clearly reflected in Fig. 2.13b, which shows «,
the fraction of free DNA in solution. The second phase boundary (p = po) is
indicated, both experimentally and theoretically, by the change in slope of the &
Versus p curve.

In Fig. 2.14 we show how Afs = AE — TAS, the formation free energy of
the LS phase, per unit cell, varies with p, for ¢ = 0.5, and ng = 4mM. Here we
have used s = [ = 1.7A, so that there is exactly one DNA charge in each unit
cell. —T'AS is the contribution to A fo from the entropy gain associated with the
release of counterions, whereas AFE is the change in the electrostatic energy (in
which we include the very small contribution resulting from the lipid demixing
entropy). The most striking result of these calculations is the large contribution
of the counterion release entropy, reaching its absolute and relative maximum,
(—TAS/Afc =~ 0.97, Afc ~ —7.5kgT), at the isoelectric point, p = 1. Note that
A fe is minimal at p slightly larger than 1; again, the moderate increase of A fo at
larger p arises from the weak repulsion between the apposed cationic monolayers.
The maximum of AS at isoelectricity is not surprising, because at this point
electrical neutrality can be achieved by the fixed macroion charges. When p is

less than 1 positive counterions must be present within the condensate. Since d,
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Figure 2.13: a) The fraction of counterions released upon complex formation as a
function of the CL/DNA charge ratio, for an equimolar lipid mixture, ¢ = 0.5. The
results from conductivity measurements are shown as solid squares. The solid curve is
the theoretical prediction for the 4mM NaCl solution. The arrows mark the theoretical
phase boundaries, p; and p2. b) The fraction, «, of free DNA in solution, as determined
by optical absorption at 260nm (squares) and the theoretical calculations (solid curve).
The arrow marks p;.

the distance between DNA strands, decreases with p, a larger number of highly
confined counterions enter the complex as p decreases, explaining the steep rise
in TAS on this side of the isoelectric point. Additional, negative, counterions
also enter the complex when p increases beyond 1. Here, however, d increases
while the spacing between the confining bilayer surfaces, h, is constant. Since h
is comparable to the screening length of the isolated lipid layers the increase in

—TAS in this regime is quite moderate.

Somewhat less expected is the small value of |AE], reaching its minimum
at p = 1. This is because the electrostatic attraction between the DNA and
lipid surfaces is largely compensated by the electrostatic repulsion between the

apposed DNA and cationic lipid surfaces.

A qualitative estimate of the entropy gain associated with counterion release
can be obtained as follows. Let n, and n_ denote, respectively, the “effective”
concentrations of counterions in the vicinity of the lipid bilayer and DNA surfaces
prior to complexation. Now suppose, based on our calculations, that all counte-
rions which are not needed for charge neutrality in the bound state are indeed re-
leased. For p = 1, this implies AS ~ 2kg In(n/ng) where n = \/n n_ is the mean
“effective” concentration of counterions in the diffuse layers. Rather than esti-
mating AS using 7, let us estimate n using the calculated value TAS = 7.5kgT.
For ng = 4mM this implies n ~ 0.17M. Noting that the areas per fixed charge

on the membrane and DNA surfaces are similar, ~ 120A2, we obtain l.g ~ 80A
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Figure 2.14: Left: Afc — the formation free energy of the LS phase, per unit cell,
as a function of the lipid/DNA charge ratio, p .—TAS and AFE are the counterion
entropy and electrostatic energy contributions, respectively. fo is the charging free
energy of the complex. Right: The relative contribution of the counterion entropy to
the formation free energy. The arrows mark the phase boundaries.

for the “effective thickness” of the diffuse counterion layers. This value is com-
parable to the screening length of the, separated, charged surfaces, which should
be on the order of the Debye length I, = 50A.

Our calculations reveal that the entropic contribution to the association free
energy of the LY complex is dominant, essentially complete at the isoelectric
point. More generally, the entropic and energetic components of the complex
formation free energy should depend sensitively on its geometry. It is expected,
for instance, that the energetic contribution to the formation free energy of the
hexagonal (H§;) CL-DNA phase is larger than that of the LS phase, owing to the
more favorable (concentric) configuration of the oppositely charged surfaces in
this geometry (Koltover et al., 1998; May et al., 2000a; May & Ben-Shaul, 1997).

2.4 Discussion and summary

We have seen in the above that inter-bilayer repulsion in the complex is respon-
sible for the fact that the amount of bilayer which the complex can accommo-

date is finite, resulting in the appearance of a free bilayer phase once p exceeds

p2(¢) > 1. Similarly, inter-DNA repulsion is responsible for the finite amount of
DNA (in excess of that at the isoelectric point) which can be incorporated into

the complex, resulting in the appearance of free DNA in solution when p falls

below p;(¢) < 1. In the previous section, based on numerical calculations of the

complex free energy and the coexistence conditions, we have shown how p;(¢),

di(¢) = p1(0)(a/19), pa(d) and d2(9) = pa(¢)(a/1¢) vary with ¢. Now we provide
a qualitative interpretation of these results, based on a simple “box” model of the
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d

Figure 2.15: The complex unit cell used in the box model. The broken circles illustrate
the DNA cross-section. In the model, these are the shaded surfaces.

complex. As we shall see, this model, though highly approximate, captures the
essential physical principles governing the complex stability, and yields simple

closed form expressions for dy, ds, p1 and ps.

2.4.1 A simple box model

The complex unit cell may be viewed as a box, bounded (“above and below”)
by two positively charged lipid bilayer “walls”, and (“to the left and right”) by
two negatively charged DNA “walls”. The third dimension of this box, along the
DNA axis direction, is infinite.

The free energy of the complex reflects the charging energy of these walls,
as well as the interactions between these charged surfaces (associated with the
confinement of mobile ions to the complex “box”). Similar factors would dictate
the complex free energy if the DNA surfaces were planar rather than curved,
as shown in Fig. 2.15, which illustrates our box model. Of course, the finite
curvature of real DNA surfaces is important for determining the numerical value
of the complex free energy, but not the qualitative dependence of this quantity on
such factors as the lipid charge density (¢) and the asymmetry (d/h ratio) of the
unit cell . Thus, our first approximation is to replace the curved DNA surfaces
by planar surfaces of height h, extending between the two planar bilayers. The
distance between these walls will be denoted as d. (As indicated in Fig. 2.15 this
d represents an intermediate value, smaller than the inter-axis separation and
larger than the inter-surface spacing between neighboring DNA rods. An exact
identification of d is irrelevant, as all our conclusions involve the ratio d/d*.)

The complex free energy is minimal at the isoelectric point where the net

charge on the complex walls is zero. Above the isoelectric point (p > 1,d > d*)
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the net charge on the complex walls is positive, with the excess, uncompensated,
charge spread over the bilayer surfaces. Similarly, when p < 1, an excess negative
charge is spread over the DNA surfaces. The complex free energy will be calcu-
lated based on two assumptions reflecting these notions. First, it will be assumed
that the electrostatic free energy of the complex arises, completely, from the ex-
cess charging of the bilayer surfaces when p > 1 and from the excess charge on
the DNA surfaces when p < 1. Second, to model the free energy between a pair
of charged (e.g., bilayer) walls we shall treat them as infinite two-dimensional
surfaces, in the regime where the Debye length (1) greatly exceeds the Gouy-
Chapman length (lg¢). (More specifically, we shall consider the “Gouy-Chapman
regime” where [p is larger than [;c as well as the spacing between the charged
surfaces i.e., d and h)

For p > 1 the net charge density on the bilayer surfaces is o,,, = (do* —
ho~)/d = 0% — (h/d)o~ where 0= = e¢/a is the actual cationic surface charge
density. Similarly, 0~ = e/2hl is the charge density on the planar surface repre-
senting (one half of) the DNA envelope. In analogy to the bilayer composition
we define ¢p = (e/a)o~ = a/2hl as the dimensionless charge density (“composi-
tion”) of the DNA surface. (Recall, [ = 1.7A is the separation between charges
along a DNA strand. Using also a = 70A% and h = 26A we find ¢p ~ 0.8.) The

excess charge density on the bilayer surfaces is given by

— h- - d*
P=09— Ed)D =¢(1 - E) (p>1) (2.17)
Similarly, the excess charge density on the DNA surfaces is given by
- d- - d
bp=bp—56=dp(1 - ) (0 <1) (2.18)

For the electrostatic free energy of the complex, above the isoelectric point,

we write

fo = Ad(26[n(Dg) — 1] + B/h) (0> 1) (2.19)

whereas below the isoelectric point

where A = 2skgT/a,D = 4rlg/ka and B = wa/2lp are constants; s denoting
the (arbitrary) depth of the unit cell. The first term in Eq. 2.19 accounts for the
excess charging energy of the bilayer surfaces (from 0 to ¢) in the low salt (high
[p) limit, and follows from Eq. 2.3 for p &~ ¢ > 1. The second term in this equa-
tion represents the electrostatic interaction between two equally charged surfaces,
separated by a distance h, corresponding to the conditions defining the Gouy-
Chapman regime (h > (1/pk) = lgc). Eq. 2.20 is, similarly, the electrostatic
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energy corresponding to excess (negative) charge on the DNA surfaces, whose
area is proportional to A and whose separation is d.

To solve the coexistence conditions we also need the free energies of the bare
bilayer and the naked DNA. The electrostatic free energy of the bilayer is given
by the first term in Eq. 2.19, with the actual charge, ¢, replacing the net charge ¢;
namely, fp = Ad(2¢[In(D¢)—1]). Our analysis of the bilayer-complex coexistence
will be limited to the simpler case of “blocked lipid exchange”. In this case the
lipid mixing free energy in the free bilayer and the complex are identical and can
thus be disregarded. For the charging energy of the naked DNA surfaces (which,
for consistency, we treat as planar) we have fp = Ah(2¢p[In(D¢p) — 1].

Using the above expressions for fo and fg in the bilayer-complex coexistence

condition, Eq. 2.12, we obtain

1n(1—ﬁ>+£+ B _y (p>1) (2.21)
d* d  2hop

The solution of this equation, d = cﬁ(q@), determines the value of d at the bound-
ary between regions (ii) and (iii) for the case of blocked lipid exchange. Corre-
spondingly, fa(¢) = dda(d)(1/a).

Suppose first that B = 0, as would be the case if there were no repulsion
between the charged bilayer surfaces in the complex. For this, hypothetical,
case we find dy(@) — oo. This result is consistent with the fact that, for all
finite d, the effective charge on the complexed bilayer, ¢, is smaller than that of
the free bilayer, ¢. Consequently, in the absence of inter-bilayer repulsion, the
complex free energy is always lower than that of the free bilayer, which explains
the unbound uptake of bilayer into the complex. We know, however, that cﬁ(q@)
is not much larger than d* (see Fig. 2.10); i.e., bilayer repulsion is important. For
d*/d < 1 we find from Eq. 2.21,

dy = d* /(1 — exp[—(1 + B/2h¢)]) (p>1) (2.22)

indicating that dy(@)/d* is a decreasing function of ¢. For the molecular pa-
rameters used in our calculations we find B/h =~ 0.6. For ¢ = 0.5 this implies
CZQ/d* ~ 1.25, in surprisingly good agreement with the value obtained from our
detailed calculations dy/d* ~ 1.3.

Using the complex-DNA coexistence condition, Eq. 2.11, an equation similar
to Eq. 2.21 can be derived for d/d* = d;(¢)/d* in the region p < 1. Here, for
d/d* <1, we find

4 = d*(1 — exp[—(1 + B/h%)) (p<1) (2.23)

From this equation it follows that as ¢ increases, d; — d*, in qualitative agree-

ment with the results shown in Fig. 2.10. For the equi-molar system (¢ = 0.5)
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we find d; /d* ~ 0.77, which, perhaps fortuitously, is nearly identical to the result
derived from our detailed calculations.

Considering the drastic approximations and assumptions involved in the for-
mulation and solution of the simple box model we obviously do not expect that
this model should confirm all our findings. For instance, we did not even try to
include in this model the (important) effects of lipid charge modulations, nor to
account for the more complicated case of free lipid exchange. Note also, that
none of the above equations reflects the dependence of the phase boundaries on
the salt concentration in the system, (which follows from the fact that the model
was applied for the Gouy-Chapman regime, corresponding to low salt solutions).
Nevertheless, as stated earlier, the simple box model does capture the basic fea-

tures of the complex-DNA and complex-bilayer coexistence.

2.4.2 Other models

Bruinsma (1998), has independently discussed how the nonlinear Poisson-Boltzmann

theory can account qualitatively for the features observed by Radler et al. (1997)
for the structural evolution of DNA-cationic lipid complexes as a function of
charged-lipid to DNA ratio. Because he develops an analytical — rather than
numerical — solution of the problem, he is constrained to introducing several sim-
plifications (e.g., low surface charge densities, and no added salt) in addition to
those discussed in our present work. Nevertheless, his model of the lipoplex is
consistent with ours and provides a slightly different flavor to its interpretation.
He too allows for spatial variation of the bilayer surface charge density, induced
by interaction with the oppositely-charged DNA strands, and — while not solving
explicitly for n(z) — is careful to treat self-consistently the corresponding bound-
ary condition for the electrostatic potential at this surface. Also in his treatment,
two-phase coexistence between the LS complex and excess DNA (low p) and ex-
cess lipid (high p) are identified by chemical potential relations equivalent to our
Eqs.2.11-2.14. However, unlike in our model, where the naked DNA is treated as
a macroscopic phase — embedded in a dilute aqueous salt solution — Bruinsma’s
expression for the free energy of DNA in solution is based on a cell-like model for
the pure counterion case (Lifson & Katchalsky, 1954) which involves a In ® term,
with ® denoting the volume fraction of the free DNA. This ® dependence then
enters the DNA-lipoplex equilibrium condition, implying a weak dependence of
d on p at finite ® (excess DNA, our region (i)). Around ® = 0, which is iden-
tified as the isoelectric point, d shows a singular dependence on ® (equivalently
p) increasing steeply from a low value to a higher one, the latter determined

by lipoplex-bilayer coexistence. In other words, the isoelectric point is unstable
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with respect to uptake of either DNA or bilayer. In our terminology this pic-
ture implies a sudden jump from d; to dy, and p; = p* = ps, i.e., no one-phase
(complex) region. This result is at variance with our findings. On the other
hand Bruinsma’s conclusion regarding region (iii) (excess bilayer) are similar to
ours. He explains the constancy of DNA-DNA spacing at high p values in terms
of the repulsive interaction between bilayers within the complex; this repulsion
increases with the deviation from the isoelectric point and hence ultimately over-
whelms the effect of counterion release which had been driving uptake of lipid
bilayer. Recall that we had explained the uptake of DNA (p < 1) and bilayer
(p > 1) in terms of the entropy gain of bound counterions (relative to their state
in "free” DNA or "free” bilayer, respectively) as they move into the complex with
significantly lower concentrations. See, for example, the excess charge densities
defined by Eqgs. 2.17, 2.18 in the "box "model, each of which is generally quite
small compared to their ”bare” values in the free macroions (DNA or liposome).
This phenomenon appears still more dramatically in the approximate analytical

work of Bruinsma’s leading to the ”isoelectric instability”.

Dan (1996) has proposed a quite different explanation of the constancy of
DNA spacings at low and high values of charge-lipid to DNA. Her argument is
based on the idea that elastic deformation of the bilayer by its interaction with
DNA gives rise to an effective attraction between the DNA strands. At high p
values (i.e., low DNA content relative to lipid, at fixed neutral-to-cationic lipid
ratio — note that Dan’s ratio p is defined in a way which makes it inversely propor-
tional to ours), all the DNA in solution is intercalated in the sandwich complexes,
which in turn coexist with excess liposomes. Here the DNA spacing takes on its
optimum value, d,, reflecting directly the competition between these relatively
long-ranged attractions (taken to vary linearly with d) and the exponentially-
screened, electrostatic repulsions. Upon decreasing p — adding DNA, more and
more of the ”free” bilayer is bound, with the DNA spacing remaining constant
at dy. This regime persists down to p values which are low enough so that there
is no longer any ”free” /”excess” bilayer. Further decrease in p leads to a de-
crease in d spacing, because the strand-bilayer adsorption energy overwhelms the
strand-strand repulsion. But, according to Dan, this drop in d is arrested by the
onset of the isoelectric point, beyond which she argues that the DNA spacing
will remain constant at a value equal to the average distance d, between cationic
lipid charges (or to the hard-core diameter of the DNA strands, if this quantity
is larger than d,). This scenario, then, is significantly different from the present
one, and Bruinsma’s, not only because of the central role ascribed to an effective
attraction between intercalated DNA’s, but also because it underplays the special

nature of the isoelectric complex as one which tends to suck in both excess DNA
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and cationic lipid bilayers because of the lower concentrations made available to

bound counterions than in the ”free” DNA and ”free” liposomes, respectively.

2.4.3 Concluding remarks

Using an electrostatic model for the lipoplex and straightforward, though ap-
propriately modified, thermodynamic expressions for phase equilibria, we were
able to explain the structure and phase evolution in aqueous solutions contain-
ing DNA, neutral-cationic liposomes and LS lipoplexes. Our treatment of these
phenomena was based on the premise that the lipid bilayers in the complex are
perfectly planar and of constant thickness, for all lipid compositions. This, of
course, is an approximation, valid for lipid bilayers of high bending rigidity and
small spontaneous curvature, consisting of lipids with similar chain lengths. On
the other hand, for a lipid mixture whose (monolayer’s) spontaneous curvature
is negative (e.g. DOPE containing mixtures) the honeycomb (Hf;) complex may
be a more stable structure (Koltover et al., 1998).

Quite generally, variations in the lipid composition imply variations in both
the bending rigidity and the spontaneous curvature of the monolayers constituting
a lipid membrane. In an LY complex, for instance, softening the membrane
would, most probably, involve curvature modulations of the lipid bilayers around
the DNA strands. Correlated curvature modulations between stacked (lipoplex)
bilayers may result in 3D order (“locking”) of the DNA strands in the complex.
If, by compositional variations, the lipid membranes change both their rigidity
and spontaneous curvature, a structural phase transition may take place between
one complex geometry and another (e.g. LS — HY). These scenarios are the

topic of the next chapter.
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Chapter 3

From Lamellar to Hexagonal

Complexes

3.1 Introduction

In the previous chapter we considered, among other degrees of freedom, the im-
portant role of lipid mobility in stabilizing the LY DNA-lipid complex. In this
chapter we will examine another important degree of freedom, namely the lipid
(bi/mono-)layer elasticity. We will study the way lipid mobility and elasticity
are intimately coupled, so that it is the combination of the two that ultimately
determines what will be the equilibrium state of the complex.!

Quite generally, the preferred equilibrium geometry of a DNA-lipid conden-
sate is dictated by the surface charge density and the elastic properties of its con-
stituent lipid layers. Both of these characteristics depend, in turn, on the nature
and composition of the CL/HL mixture. Double stranded DNA, being a rather
rigid molecule (of large persistence length, see Sec. 1.4), imposes constraints on
the possible lipoplex geometries since it retains its essentially linear structure
in all complexes. On the other hand, the lipid layers are soft self-assembled
membranes which can adapt their structure so as to optimize the complexation
geometry.

In Chap. 2, two specific ordered DNA-lipid phases were introduced, namely
the LY and HY complexes. The structural differences between the LS and HY
phases imply significant differences between the electrostatic (charging) energies
and the lipid elastic energies of these two geometries. In the H{; phase each

DNA molecule is surrounded by a highly (“negatively”) curved lipid monolayer,

!Some of the results presented in this chapter were previously reported in May et al. (2000a).

This chapter also contains some previously unpublished results.
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of radius R ~ 13A (Koltover et al., 1998). This, cylindrically concentric geom-
etry provides efficient neutralization of the DNA charges by the cationic surface
charges, especially at the isoelectric point where the total cationic charge exactly
balances the total DNA charge (May & Ben-Shaul, 1997). On the other hand,
the strongly bent lipid monolayer may inflict a significant curvature deformation
energy penalty. The lower the bending rigidity of the monolayer, &k, the smaller
the deformation free energy price (see (Helfrich, 1973); see also Sec. 1.3). More
favorable is the case where ¢y, the spontaneous curvature of the monolayer, con-
forms to the curvature of the DNA rod, namely, —¢y ~ 1/Rp, (the minus sign
signifying that the monolayer curvature is opposite to that of the DNA). Un-
der these circumstances the hexagonal complexes are expected to be more stable
than the lamellar ones. It must be noted, however, that charged lipids generally
prefer the planar bilayer geometry (co &~ 0), whereas the inverse-hexagonal geom-
etry is preferred by (some) neutral lipids, e.g., DOPE. Thus, the stability of Hf
complexes is expected to depend sensitively on lipid composition. Similar qual-
itative considerations imply that lipid mixtures characterized by a high bending
stiffness (k > kpT where kg is Boltzmann’s constant and 7" the temperature)
and/or small spontaneous curvature (|¢o| < 1/Rp) will favor the formation of the
LS phase (May & Ben-Shaul, 1997; Harries et al., 1998; Koltover et al., 1998). In
this geometry charge matching is somewhat less efficient than in the hexagonal

packing, yet the lower curvature energy overrides this difference.

These qualitative notions were elegantly corroborated by experiments in which
the elastic properties of the lipid monolayers were controlled by changing the na-
ture of the lipid mixture (Koltover et al., 1998). The cationic lipid in these
experiments, DOTAP (see Sec. 1.3), is characterized by a very small spontaneous
curvature. Using mixed-lipid vesicles composed of DOTAP as the cationic lipid
and DOPE as the helper lipid it was found that the preferred aggregation geom-
etry is the H{; phase. On the other hand, the use of DOPC as the helper lipid
promotes the formation of LS complexes. These findings are consistent with the
fact that pure DOPE self-organizes into an Hy; phase, i.e., the spontaneous cur-
vature of this lipid is negative, whereas DOPC molecules prefer the formation of
planar bilayers. In these experiments one tunes the spontaneous curvature of the
lipid layer by controlling the composition of the lipid mixture. Based on many
experiments in microemulsion systems it is known that one can also control the
bending rigidity of amphiphilic films. For example, by adding short chain alco-
hols to the mixture it is possible to reduce the bending rigidity by about one
order of magnitude (Safinya et al., 1989; Szleifer et al., 1988). Indeed, the addi-
tion of hexanol to the DOTAP/DOPC-DNA system results in a clear, first order,
LY — HY; phase transition (Koltover et al., 1998).
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The qualitative considerations outlined above regarding the relative stabilities
of different CL-DNA aggregates apply to one, given, CL/HL mixture composition.
Furthermore, they are only valid if all lipids and DNA molecules participate in
complex formation. Different considerations apply when the mixture is “non-
stoichiometric”. Taking into account that aqueous solutions containing DNA
and two kinds of lipids are multicomponent systems they are expected to exhibit

rich and complex phase behaviors.

For a given salt concentration (chemical potential) the aqueous solution can be
treated as a large reservoir embedding the condensed phases (i.e., complexes, bare
bilayers and naked DNA), allowing to count out the water and salt. This leaves us
with three relevant chemical species (CL, HL, and DNA) which, by Gibbs’ phase
rule corresponds to (a maximum of) five thermodynamic degrees of freedom.
Fixing the temperature, and assuming that the lipid layers are incompressible,
(in all four lipid-containing phases), we eliminate two more degrees of freedom.
Still, the phase rule implies that (up to) three condensed phases can coexist in
solution, e.g., two kinds of complexes and uncomplexed DNA. The experimental
observation of a first order LY — HS; transition (Koltover et al., 1998), i.e., two
coexisting phases, is in line with this conclusion. As we shall see these systems

are also expected to exhibit three-phase equilibria.

Thus far, we modeled the lipid membranes in the LS complex as perfectly
planar slabs. However, this need not be the case. When the membranes are
sufficiently soft (yet not soft enough to favor the Hf, phase) or if one of the
CL/HL has a propensity to form curved surfaces, the membrane may corrugate
so as to optimize its contact with DNA (see Fig. 2.1). If the membrane is further
softened, a transition may occur to the H phase. In this respect, the membrane
corrugation in the LS complex may be regarded as a delay of the onset of the
LS — HY transition.

Limited experimental evidence supports this notion. In cryo-transmission
electron microscopy (cryo-TEM) studies of the LS phase, spatial correlations
were found between DNA strands in different galleries (Battersby et al., 1998).
In another series of X-ray studies, the corrugation and charge density modulation
in an LC-like complex, but in which the membranes are in the gel phase, were
measured (Artzner et al., 1998). The results show that these effects are signifi-
cant. Further support for the possible formation of corrugations is gained from
computer simulations of lipid-DNA complexes (Bandyopadhyay et al., 1999) .
Another possible consequence of membrane corrugation in the LS phase is an
induced locking between neighboring galleries. This follows the formation of
“troughs” in a gallery, induced by the interaction of the membrane with DNA in

adjacent galleries. This imposes “adsorption sites” for the DNA in the two neigh-
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Figure 3.1: Schematic illustration of the five macroscopic phases included in our theo-
retical scheme. The phases denoted by H and S are the HICI and LS complex structures,
respectively. The symbols I and B mark the Hy; and L, phases, respectively. D rep-
resents uncomplexed DNA. The shaded regions correspond to the DNA cross sectional
area. The lipid layers are mixed, consisting of cationic and uncharged (helper) lipids.

boring galleries - and so on. The formation of these troughs may thus correlate
between the positions of DNA in different galleries. Furthermore, if the troughs
are shallow, or absent altogether a mechanism for the formation of phases where
DNA in different galleries are uncorrelated (elsewhere termed “sliding phases”
(O’Hern & Lubensky, 1998; O’Hern et al., 1999; Salditt et al., 1997)) may form.

Our goal in this chapter is to analyze, theoretically, the major determinants
of the phase behavior of lipid-DNA solutions. To this end we have studied in
detail several representative systems, corresponding to lipid mixtures of different
elastic characteristics. As we shall see, the phase behavior is relatively simple
for “rigid” lipid layers which, in the absence of DNA, show strong propensity to
form planar bilayers. Much richer and more complex phase diagrams, involving a
multitude of transitions and coexistence regimes, are predicted for flexible and /or
“curvature loving” lipid layers.

The phase diagrams presented in the following sections involve two levels of
calculations. First, for a given type of lipid mixture we calculate, as a function
of the lipid composition (CL ratio) and lipid/DNA ratio, the elastic, mixing and
electrostatic charging free energies of all relevant structures, i.e., the H{; and
(perfectly planar) LS complexes, the bilayer and inverse-hexagonal lipid phases
and the uncomplexed DNA, as illustrated in Fig. 3.1. (The symbols, H for Hf
etc. are used for notational brevity.)

The electrostatic free energies are calculated based on the nonlinear Poisson-
Boltzmann (PB) equation using methods described in Chap. 2 and elsewhere
(May & Ben-Shaul, 1997; Harries et al., 1998). The elastic terms are evaluated
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using familiar expressions for the curvature and stretching deformations and sim-
ple models for the elastic constants of mixed lipid monolayers. Then, writing the
total free energy of the solution as a weighted sum involving all possible phases,
we determine the phase diagram by minimizing this free energy with respect to
all relevant thermodynamic variables.

We will then turn to study the possibility of corrugations forming in the L
complex. We shall show how, and to what extent, the geometry and free energy
of the complex is affected through corrugations, and charge density modulations,
and how these relate to the lipid composition degree of freedom. We will also
discuss the stability of the corrugations with respect to the membrane thermal
undulations, and show that for a certain range of compositions and elastic prop-
erties, a stable corrugated LY phase is expected. We do this by extending the
expression for the free energy functional for the LS unit cell (Sec. 2.2) to also

include an elastic contribution.

3.2 Theory

We consider an aqueous salt solution containing N* (monovalent) cationic lipids,
N? helper lipids, and double stranded DNA of total charge —eM, Where M =
sD/l and e is the elementary charge. The lipid and DNA molecules are dis-
tributed among the five possible structures shown in Fig. 3.1. We assume that
all these structures, including the naked DNA, are large enough and can thus
be treated as macroscopic phases. The total volume fraction of the condensed
phases is assumed to be small, enabling us to treat the embedding solution as an
infinite reservoir of (monovalent) salt of concentration ny = ny = ng = constant.
Under these assumptions the total volume of the solution is irrelevant for phase
transitions involving the condensed phases.

At a given temperature, T, and salt concentration, ng, our three component
system (DNA, CL, HL) is specified by two composition variables,

Nt Nt
N++N0 0 PTr

Here ¢ is the mole fraction of the cationic lipid in the original lipid mixture,

5= (3.1)
and p is the ratio between the total number of cationic and DNA charges in the
system. Equivalently, since all lipids, whether in pure lipid phases or DNA-lipid
complexes, are organized in monolayers, we can regard p as the ratio between
positive and negative macroion charges in the solution, (to distinguish from the
mobile counterion charges).

The total free energy of the three component system F = F(N*, N° M;ng, T)

is a sum of terms corresponding to the various phases. Each term involves several



72

FrROM LAMELLAR TO HEXAGONAL COMPLEXES

thermodynamic and structural degrees of freedom. The phase diagram of the
system is determined by minimizing F' with respect to these variables subject to
material conservation conditions. In the two following subsections we first define
the relevant degrees of freedom corresponding to the various phases, and then
describe our model for calculating the free energy components of each phase. We
end this section with a brief discussion of the approximations and assumptions

employed in our theoretical model and their possible influence on our conclusions.

3.2.1 Phases

DNA

We treat the double stranded DNA as an infinitely long and straight rod, ignoring
end effects as well as translational and conformational entropy contributions to
its free energy. More specifically, as in Sec. 2.2, the DNA is treated as a rigid
rod of radius R, = 10 A, (corresponding to the surface of B-DNA), with uniform
surface charge density o~ = —e/2nRpl. (We postpone discussing these, and
other, approximations to the end of this section.) We shall assume that the
dielectric constant inside the DNA rod is vanishingly small compared to that of
the aqueous phase. The free energy of the DNA phase (D in the phase diagrams)
is entirely due to the electrostatic charging energy of the rod in the given salt
solution. Its contribution to F is Fp = lMDfD where [Mp is the length of
uncomplexed DNA in solution and fp is its charging free energy per unit length,

(hereafter 1 A). Note that for given ny and T, fp is constant.

Lipid bilayer

We use N and Ng to denote the number of CL and HL molecules in the bilayer
phase, respectively. (In the phase diagrams, and as subscripts, we replace L, by
B.) The two lipid species are assumed to be uniformly mixed, forming an ideal
two-dimensional (2D) fluid mixture. We use the same cross-sectional area per
molecule, a = 70 A2, for both the CL and HL molecules.

The total number of molecules in the L, phase is Ng = N} + NB. TIts
composition, specified by ¢p = Nj /Np, is the only relevant intensive variable
of the bilayer; ¢p determines the surface charge density, op = edp/a, and the
elastic properties of a given lipid mixture. The contribution of the bilayer phase
to the total free energy F' is Fg = Npfp(¢p), with fg(¢p) denoting the free
energy, per lipid molecule, in a bilayer of composition ¢p; fg involves electrostatic
(charging), elastic and mixing terms, all depending on ¢ 5. The hydrophobic lipid

chain regions in the bilayer phase, as well as in all other phases, will be treated
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as a medium of zero dielectric constant.

Inverse-hexagonal phase

We use N, and N? to denote the number of CL and HL molecules in the inverse-
hexagonal lipid phase, Hy. (For notational brevity we use I = “inverse”, rather
than Hyy as the subscript denoting this phase). The total number of lipids in this
phase is Ny = N;7 + N? and its lipid composition is ¢; = N;"/N;. We assume
that the radius of the water tubes, R; = 13 A, and the area per lipid molecule
a = 70 A® are constant, independent of ¢;, and hence of the cationic surface
charge density. Note that we use the same area per molecule for both the planar
and the inverse-hexagonal phases. This is a reasonable approximation provided
this area, a, is measured at the so-called “pivotal surface”, as discussed in more
detail later in this section.

For the cylindrical symmetry of the Hy; phase, the area per headgroup, asg,
and the area at the pivotal surface (typically located just inside the hydrophobic

region) a are related by,
Qpg = G (1 + iLC[) = QR[/(R[ + iL) (32)

with & denoting the distance of the headgroup surface from the pivotal surface
and ¢; = —1/(R; + h) is the monolayer curvature at this surface. We adopt here
the convention that the curvature of the inverse hexagonal phase is negative. In
the calculations presented in the next section we shall use h=6A which, for
Rr=13A and a = 70A2, implies ay, = 47.9A%.

Subject to the assumptions above the free energy of the Hy phase, F; =
Nifi(¢r), depends on one intensive variable, ¢;. Like in the bilayer phase, the
free energy per molecule, f;(¢;), is a sum of electrostatic, elastic and mixing

contributions.

Lamellar Complexes

The LY (or S = “sandwich”) phase is an ordered smectic-like array, as schemati-
cally illustrated in Fig. 3.1. Tt is composed of N cationic lipids, N2 helper lipids,
and Mg DNA charges. The lipid composition is specified by ¢s = N& /Ng; Ng =
Ng + NJ. The LY phase is a periodic structure in the plane (z,y) perpendic-
ular to the DNA axis (z), translationally invariant along z. Assuming that the
lipid bilayers are perfectly planar, the structure of this phase is specified by the
DNA-DNA repeat distance, d, the distance between apposed lipid surfaces, [,
and the thickness of the lipid bilayers, w. Because the dielectric constant within

the hydrophobic region is set equal to zero, w does not enter our model for the
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electrostatic energy. (However, it still has a substantial effect on the boundary
condition, in that it includes “image charges” in an explicit way.) The bilayer
thickness affects the bilayer bending rigidity, yet this is already accounted for by
our choice of the bending constant, k, (see below). Also, both experimentally
(Rédler et al., 1997) and theoretically (Chap. 2), it was shown that the thickness
of the water gap, h, is essentially independent of ¢g, for all relevant compositions.
Consistent, with this finding we shall use h = 2(Rp +¢6) = 26 A with § = 3 A
denoting the thickness of the thin hydration layer separating the lipid and DNA
charges.

The free energy of the LS phase, Fs, depends on two independent intensive
variables; e.g., the mole fraction of charged lipid, ¢s, and the positive/negative
charge ratio ps = N&/Ms. These composition variables also determine the only
structural variable of the LY phase, d; namely, d = Nga/2Msl = (a/2l)ps/ds.
We can thus write Fs = Ngfs(d, ¢s) = lMng(d, ¢s) where fs(d, ds) is the free
energy per lipid in the LS phase. In the second equality fs = fc/s is the free
energy of the LY phase, per unit length of DNA. We shall also refer to fs as the
free energy “per unit cell” of the complex. When corrugations are allowed in the
LS complex, h(z) is no longer constant. Thus, generally, d # Iy where [y is
the length of lipid membrane between two strands. We return to this point in
Sec. 3.2.3.

Hexagonal Complexes

The HS (or “honeycomb” = H) phase consists of Nj; cationic lipids, N helper
lipids, and My DNA charges. Its lipid composition is ¢ = N;; /Ny with Ny =
N + NY% denoting the number of lipids in the hexagonal complex. The radius
of curvature of the (strongly curved) lipid headgroup surface in the HY phase,
Ry, must be larger than the radius Rp of the DNA strands intercalated within
the cylindrical water tubes. We thus set Ry = Rp + 9 = 13 A with 6 = 3A
denoting the thickness of the water layer intervening between the DNA and lipid
charges. This choice is based on experimental observations (Koltover et al., 1998).
Note also that small 0 ensures (at isoelectricity) efficient electrostatic charge
balance (May & Ben-Shaul, 1997). Furthermore, as will be discussed in the
next subsection, large 0, and hence large Ry, implies a high energetic penalty
associated with the unfavorable stretching of lipid tails towards the interstitial
axes within the hydrophobic core of the hexagonal phase (See Sec. 1.3 and also
(Seddon & Templer, 1995; Turner & Gruner, 1992; Gawrisch et al., 1992; Kozlov
et al., 1994; Leikin et al., 1996)). Finally, note that to simplify the calculations
we have set Ry = Ry. Thus, the areas per molecule in the pivotal and headgroup

surfaces in the HY] complex are related by Eq. 3.2.
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Assuming Ry = constant the Hf; phase is characterized by a single inten-
sive variable: ¢g. The free energy of this phase is then Fg = Ny fy(oy) =
lMHfH(ngH), where fg is the free energy per lipid molecule, and fH is the free
energy per unit length of DNA. Note that Ny /My = 2nRyl/an, = 27 (Rp + 0 +
h)l/a, implying fir = [27(Rp + 6 + h)/afn.

3.2.2 Degrees of freedom

The DNA/CL/HL mixture can exhibit a variety of phase equilibria. One way to
map the phase diagram of this system is to consider all possible two- and three-
phase equilibria, solve the relevant coexistence equations and identify the phase
boundaries by matching the chemical potentials of the pertaining components.
We adopt here an alternative, computationally more efficient, route. Namely, we
express the total free energy of the three component mixture, F', as a sum of
contributions representing all possible phases, and minimize it with respect to all
relevant variables. For every given lipid/DNA mixture the minimization yields
the number and identity of the coexisting phases, their relative proportions, as
well as their compositional and structural characteristics.

Explicitly, our free energy functional involves eleven “concentration” vari-
ables: four N;*’s (i = B,I,S,H), four N”’s, and three M;’s (i = D, S, H). All

quantities appearing in F',

F = Ngfu(ou)+ Nsfs(d, ds)
+ Nofs(ép) + Nrfr(ér) +1Mpfo (3.3)

are functions of these variables, e.g., Ny = Nj; + N%, ¢ = N;; /Ny, etc. How-
ever, not all variables are independent. Furthermore, according to the phase rule
there can be no more than three coexisting phases, implying that (following the
minimization of F' for a given mixture) some of the concentrations must vanish.

For a given mixture, characterized by the total numbers of molecules, M, N
and N, three of the eleven variables are eliminated by the material conservation

conditions,

Nt = NL+N/+N&+Nj
N° = Np+ N/ + Ng+ Ny
M = Mp+ Mg+ My (3.4)

Yet another variable can be counted out because of the structural-compositional

constraint imposed on the HY phase,

Ny = [27(Rp + 8 + h)l/a)My (3.5)
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Subject to these conditions F' is now a function of seven independent vari-
ables. The thermodynamic state of a given lipid/DNA mixture (M, N*, N°) is
determined by the global minimum of F' in the multidimensional space defined by
the seven composition variables. Note that specifying M, N* and N° is equiv-
alent to specifying p and ¢, (see Eq. 3.1), and one extensive variable which is
irrelevant for determining the phase behavior of the mixture. Thus, the phase
diagrams presented in the next section will be described in the p, ¢ plane.

As a convenient reference point for calculating F' we choose the state where
all lipids reside in a planar bilayer and all DNA is uncomplexed. Relative to this

state the free energy of the system is given by
AF =F — Nfg(¢) — I Mfp (3.6)

When all lipids and DNA are associated in one phase, e.g., the lamellar complex,
this free energy change may be regarded as the “formation” free energy of this

phase.

3.2.3 Free energies

In this section we describe the various contributions to the free energy of the
different phases, and their dependence on the relevant chemical compositions. In

fact, for all phases except the naked DNA (D), the free energy is of the form
fo= 18+ &+ 10 ((=S,H,B,I) (3.7)

where the three terms on the right hand side of this equation represent the elec-
trostatic (charging) free energy, the elastic curvature energy, and the (2D) mixing
entropy of the lipid layers, respectively. In the following we briefly discuss each

of these contributions and its specific form in a given phase.

Elastic energy

Lipid bilayers and monolayers are elastic membranes which, at a certain free
energy cost, can either be stretched, or bent (or both) with respect to their equi-
librium state (Sec. 1.3;(Helfrich, 1973)). The energy penalty associated with cur-
vature deformations is generally much smaller than that involved in area changes.
For this reason we can treat the membranes as laterally incompressible. On the
other hand we must account for the ability of cationic membranes to undergo cur-
vature deformations under the strong electrostatic forces exerted by the highly
charged and strongly curved DNA strands. Thus, in the presence of DNA in its
immediate vicinity, a planar cationic lipid bilayer may re-assemble into inverse-

hexagonal layers, enveloping the DNA strands. This rearrangement is most likely
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to take place when the bilayer is composed of monolayers characterized by neg-
ative spontaneous curvature. When this propensity is strong enough, as is the
case with pure DOPE systems, the inverse-hexagonal phase will appear even in
the absence of DNA (Gawrisch et al., 1992; Kozlov et al., 1994; Chen & Rand,
1997). Otherwise, i.e., if the spontaneous curvature is not sufficiently negative,
the monolayers assemble into a planar bilayer, paying the necessary but tolerable
curvature frustration energy toll.

In mixed lipid layers the spontaneous curvature is a function of composition.
For example, in the CL/HL mixture DOTAP/DOPE the spontaneous curvature
becomes increasingly negative as the mole fraction of the helper lipid increases.
Without DNA the bilayer will destabilize at a certain mole fraction of the helper
lipid, undergoing a phase transition from the planar to the inverse hexagonal
geometry. The addition of DNA to the mixture can promote the transition to
take place at a considerably lower concentration of the helper lipid. These effects
play a crucial role in determining the phase behavior of CL/HL/DNA system.
We account for them using a simple model for the bending rigidity of mixed lipid
layers.

The elastic energy of the lipid monolayers constituting the four lipid-containing

phases illustrated in Fig. 3.1 will be expressed in the form

F(e6) = ag e~ cald))? + £ 38)

The first term in this equation represents the familiar elastic deformation
energy, per molecule, in a cylindrically bent lipid monolayer (Helfrich, 1973).
Here, k is the bending modulus, cq is the spontaneous curvature of the monolayer,
c is the actual curvature and a the area per molecule. We use this expression for
both the planar and inverse-hexagonal geometries, assuming that k,a and ¢, are
the same for both curvatures. The second term corrects for the fact that in the
inverse-hexagonal symmetry, not all molecules experience the same deformation.
Those molecules whose hydrophobic tails point towards the hexagonal interstices
(or “voids”) of the hydrophobic core are more extensively stretched than those
directed towards neighboring water tubes. Since not all lipid tails are equally
stretched some of them are necessarily “frustrated”, resulting in an average free
energy penalty of f, per molecule; see e.g.,(Kirk et al., 1984; Seddon & Templer,
1995). It should be noted that a,c,co and k are measured with respect to the
“pivotal surface” where, upon cylindrical deformations the area per molecule stays
constant, see e.g., (Gawrisch et al., 1992; Kozlov et al., 1994; Leikin et al., 1996).
For laterally incompressible lipid monolayers, as we assume to be the case here,
the pivotal surface coincides with the neutral surface, where area and curvature

deformations are, by definition, decoupled. Typically, the pivotal surface lies
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inside the hydrophobic region, close to the hydrocarbon-water interface (Kozlov
et al., 1994; Leikin et al., 1996).

In general, both £ and ¢y depend of the lipid composition ¢. In the calculations
presented in the next section we shall assume that & is independent of ¢, as is
often the case for lipid molecules of similar chain length. For the dependence of
the spontaneous curvature on ¢ we shall adopt the simple but adequate linear
interpolation formula (May & Ben-Shaul, 1995; Andelman et al., 1994),

co(¢) = 5 + (e — cp) (3.9)
where ¢§ and ¢! are the spontaneous curvatures of the cationic and helper lipids,
respectively.

Eqgs. 3.8 and 3.9 will be used for all four lipid-containing phases considered in
this work. Clearly, for the two lamellar phases f, = 0. The curvatures of the lipid-
containing phases are ¢ = cg = ¢ =0, ¢; = ¢y = —1/(Rp +6 + h) = —1/19 A
(recall Rp = 10 A, § = 3 A, and h =6 A). In the calculations reported in the
next section we shall consider several different lipid mixtures, corresponding to
different sets of the elastic constants k, cf and f,.

Finally, it should be noted that the bending rigidity of charged lipid layers
is a sum of contributions of different origins, including entropic (conformational)
repulsions between the hydrocarbon tails as well as steric and electrostatic re-
pulsions between headgroups. In Eq. 3.8 we include all contributions to the
elastic energy except the electrostatic one. When electrostatic-curvature effects
are small, they can be accounted for through an additional contribution to the
bending rigidity k, i.e., to the first term in Eq. 3.8. Usually, this contribution is
derived from the second order term in the curvature expansion of the PB elec-
trostatic energy (Lekkerkerker, 1989). However, the surfaces in the Hy and HS
phases are not only highly curved but also closed. Furthermore, for the same lipid
mixture, the cationic charge densities in the hexagonal phases are different from
those in the planar phases (May, 1996). Thus, instead of treating the changes
in electrostatic energy based on low order curvature expansions, we use the full

nonlinear PB solution for all geometries.

Mixing entropy

As in other phase separation phenomena, when two or more lipid-containing
phases coexist in solution their CL/HL compositions are generally different, im-
plying different mixing entropies. Following Chap. 2 and previous studies (May
& Ben-Shaul, 1997) we shall assume that the monolayers in the L,, Hyy and HY

phases are ideal 2D mixtures. Their mixing free energy is thus given by

fm kT = $ln g+ (1 — ¢) In(1 - ¢) (3.10)
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The presence of DNA strands in the LY phase induces a nonuniform distri-
bution of the two lipid components. The deviations from ideal mixing in this
phase are taken into account in the electrostatic free energy, f¢°. For the uniform

mixing entropy of this phase we use Eq. 3.10.

Electrostatics

The gain in electrostatic free energy is the driving force for the mutual con-
densation of DNA and cationic vesicles to form an ordered, composite, phase.
The major contribution to this free energy change is the entropy gain associated
with the release of “partially bound” counterions into the bulk solution (Harries
et al., 1998; Bruinsma, 1998). Before the association of the oppositely charged
macroions (DNA and cationic lipid vesicles) each macroion is surrounded by a
diffuse layer of “partially bound” counterions. In the condensed CL-DNA phase
most of these counterions are no longer needed for charge neutrality and can thus
be released.

The electrostatic free energy depends on the surface charge densities of the
separated macroions, the structure and composition of the condensed phases, and
the salt concentration in solution. The electrostatic free energies of the various
structures are calculated based on the nonlinear PB equation. Although the PB
approach involves some inherent approximations (see below), it was shown to
adequately predict the principal structural and phase characteristics of both the
H$ phase (May & Ben-Shaul, 1997) and the LY phase (Chap. 2). Here we use the
same algorithms for calculating the electrostatic free energy components of the
many-phase system. All our PB calculations apply to symmetric 1:1 electrolyte
solutions.

According to PB theory the electrostatic (charging) free energy of any surface,
or group of surfaces, in solution can be expressed in the form (Verwey & Overbeek,
1948),

F* = %/agpds (3.11)
S
+ kgTng / [¢)sinh ¢ — 2 cosh 1) + 2] dv
v
The first integral extends over all the charged surfaces (S), where o denotes the
local surface charge density and ¢ is the corresponding (surface) electrostatic
potential. The second integration is over the volume (V') of the electrolyte so-
lution; ¥ = ep/kgT is the reduced electrostatic potential. In writing Eq. 3.11
it is assumed that the dielectric constant inside the DNA and lipid membrane is

vanishingly small compared to the aqueous solution.
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To obtain ¢ we solve the PB equation, Eq. 2.4. In all calculations in this chap-
ter we have used ng = ng = n, = 4mM for the salt concentration, corresponding
to Ip = 50 A.

The solutions of the PB equation depend on the specific boundary conditions
for the system considered. We shall now briefly describe the boundary conditions
appropriate for the five structures illustrated in Fig. 3.1, and the corresponding
free energies. Additional details are given in Chap. 2 (see also Harries et al. (1998)
and May & Ben-Shaul (1997)).

L,: The existence of a low dielectric hydrophobic region between the two
bilayer surfaces allows treating them as separate, electrostatically decoupled,
cationic surfaces (see discussion in Sec. 1.3.5). The PB equation of a charged
planar surface is one-dimensional: d*¢/dz* = k? sinh ¢, with 2 denoting the dis-
tance from the charged surface. The boundary conditions are ¢’ = di/dz = 0
at z — oo and ¢ = —4dwpplp/a at the charged surface. Upon substituting the
solution for v into Eq. 3.11 one obtains the well known expression for the free
energy per molecule (Sec. 2.2),

es 1—
% =2¢p Tq +In(p+¢q) (3.12)

Unfortunately, this is the only geometry for which the PB equation can be solved
analytically.

Hyp, HS, D: In all these three geometries the charged surfaces are cylindrically
symmetric. Thus the PB equation is again one-dimensional, involving only the
radial coordinate r. Using ¢’ for dip/dr etc, the PB equation reads ¢" + ¢/ /r =
k2 sinh 1.

The boundary conditions for an isolated DNA rod (D phase) are: ¢’ = 0 at
r = oo, and ¢'(Rp) = 2lg/Rpl at the surface of the rod,

For the Hy; phase the PB equation is solved within the inner aqueous cylinders.
The boundary conditions are ¢'(0) = 0 and ¢'(R;) = 4w ¢;lp/any; Ri = Rp + 6.

Intercalating the DNA rods within the water tubes of the Hy; phase we obtain
the geometry of the HS phase. The electrostatic problem here consists of two
concentric, oppositely charged, surfaces. The PB equation is solved for the aque-
ous region between the two surfaces, Rp < r < Rp. The boundary conditions
are: Y'(Rp) = 2lp/Rpl at the DNA surface, and ¢'(Ry) = 4ndylp/an, at the
lipid surface. Recall that we use Ry = Ry = Rp + 6.

The PB equation for this geometry has been solved numerically for different
values of the surface charge densities and the radius of the outer (lipid) cylinder.
These solutions reveal that the electrostatic free energy is always minimal at, or
very near, the isoelectric point, where the surface charges are equal in magnitude

and opposite in sign. At this point, for surface spacings ¢, typical of the Hf; phase
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(several A), most counterions in excess of the bulk concentration are released from
the cylindrical aqueous gap into the bulk solution, resulting in maximal entropy
gain of these mobile ions. Because there are very few counterions in the gap,
the two concentric surfaces can be treated as constituting a cylindrical capacitor
(May & Ben-Shaul, 1997). In the next section we show that, at the isoelectric
point, this model yields very good agreement with the numerical solutions of
the PB equation. Away from the isoelectric point we use the PB equation to
approximate the increase in the electrostatic free energy, as discussed in the next
section.

Planar LE: The PB equation for the unit cell of the planar LS phase is solved
(self-consistently) with the same boundary conditions outlined in Sec. 2.2.

Corrugated LS complexes: Further complexity arises when we consider
elastic deformations in the LS complex (depicted in Fig. 2.1). Following the
notation in Sec. 2.2 and Sec. 3.2.3, we write the corrugated complex free energy
fo = s fs as a sum of the electrostatic (charging) free energy of the complex,
the (in-plane) lipid mixing entropy, and the elastic deformation energy. Here
however, the presence of the DNA molecules may induce both charge density
modulations and spatial membrane corrugation. The electrostatic, mixing and
elastic degrees of freedom are thus intimately coupled. Consequently, the lipid
composition profile n(z), the spatial complex corrugation h(z), the electrostatic
potential in the complex interior p(z,y), and the actual value of the complex’s
free energy, fc(o,ly, h), must be determined by minimizing the total free energy

functional, which includes the mixing, elastic and electrostatic terms, namely,

fo = [ 5wy

v

+ kBT/n+lnn—++nlnn— — (ny +n_ — 2ng)dv
v o o

T 1—

+ kel [nanﬂL(l—n)ln Tlas
a Jsy ¢

1

+ 3 /SV E(c — co(n))?ds. (3.13)

Note that due to corrugation in the complex, h = h(z) may change with
the position along the x axis. Also note that the complex free energy is now
dependent on the length of membrane between two DNA strands, 5, (generally,
I[pr > d) rather than on the DNA-DNA distance d.

The first term on the right hand side of Eq. 3.13 is the electrostatic energy.
The second term accounts for the translational (“mixing”) entropy of the mobile

ions in the complex interior, relative to their entropy in the bulk solution. The
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third term accounts for the mixing entropy of the charged and neutral lipids in
the membrane plane. The integration is over the membrane surface, (surface V
in Fig. 2.2). Locally, i.e., at any z, the lipids are assumed to be ideally mixed,
with n = n(x) denoting the local mole fraction of the charged lipid. (Recall that
the average area per lipid in the membrane is assumed to be independent of the
lipid composition.) The last term in the free energy is the elastic deformation
energy in a (locally) cylindrically bent lipid monolayer. For the dependence of
the spontaneous curvature on n we use Eq. 3.9. The local lipid composition must
satisfy the conservation constraint, Eq. 2.3

Functional minimization of fc with respect to n,,n_ and n (for a certain, pre-
defined h(z)) subject to the conservation constraint, Eq. 2.3, yields for the mobile
ion distributions the usual Boltzmann distributions, which upon substitution into
Poisson’s equation yield the PB equation, Eq. 2.4.

For ot (x) = en(x)/a, the local charge density on the membrane, we obtain,

for a given membrane spatial profile h(x)

o(1 —n)
n(l—¢)

where A is the Lagrange multiplier conjugate to the charge conservation con-

—@b—)\:k{c— [0877+cg(1—77)]}(cg—06’), (3.14)

In

straint, Eq. 2.3. Using Gauss’ equation, we relate the local surface charge density
at x to the electrostatic potential at the membrane surface, Eq. 2.5. These equa-
tions represent the boundary condition on the electrostatic potential for boundary
V in Fig. 2.2 and must be solved simultaneously, and self-consistently, with PB
equation, Eq. 2.4. The other boundary conditions, pertaining to domain bound-
aries [-IV in Fig. 2.2, are as in Sec. 2.2.

In order to find the equilibrium configuration (i.e., both the spatial corruga-
tions and lateral distribution of lipids in a membrane), for a given amount of
DNA and lipid, a stationary point in f[{h(z)}], the free energy functional of the
complex for a set of predefined h, must be found, so that fo = ming,y f&[h(z)].
In the following we restrict h to be of the form:

1
h = §A0 cos(2mzx/d) + hg (3.15)

where in this study we take hy = h(z = 0) — Ay = 26A and A, determines the
amplitude of corrugation. We shall therefore neglect all possible shorter wave
lengths contributions to h. The numerical procedure for solving the PB equation
(Carnie et al., 1994; Stankovich & Carnie, 1996; Houstis et al., 1985) and for
evaluating A, 1) and the free energy of the complex is outlined in App. B. In
determining the value for Ay, we calculate the free energy of a unit cell with a

specified [, and ¢, for a set of different Ag’s (which were in all incremented by
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0.5A between calculations). The corrugation with the lowest free energy was then

chosen as the equilibrium structure for those [, and ¢.

Membrane corrugation stability: Throughout our discussion we have as-
sumed that the complexes bear a constant and well defined unit cell. We allowed
for variations in the shape and size of this predefined unit cell, but, in effect, as-
sumed an infinitely large “nematic” field, responsible for aligning DN A molecules
in a certain preferred direction (at least on the length scale of the persistence
length). Thus, we assume that a 2D ordered array of DNA strands form in each
gallery. The possible registry and locking between galleries, and formation of
a 3D liquid crystal, manifests itself in our model, only through the membrane
corrugations, which we assume are repeated throughout the complex. However,
even when membrane corrugation is expected, it may prove to be unstable with
respect to the thermal undulations of the membrane. In these cases we can ex-
pect neighboring galleries to loose their registry, and the complex will behave as
a set of decoupled layers of 2D crystals. To find the onset of melting in the 3D
liquid crystal, we shall follow the ideal gas analogy of Helfrich and Servuss in
determining the steric interaction in the lamellar phase of lipids (Sornette & Os-
trowsky, 1994; Helfrich & Servuss, 1984). In terms of the Monge representation,
u(z, z) gives the vertical displacement of the surface from a plane reference state.
We consider an undulating membrane of area L3, for which the the fluctuations
in the membrane displacement (u2>1L/d ® is on the order of the (average) extent of
membrane corrugation Ay, i.e., (uzﬁ/f ~ Ag. When Ly ~ d we should expect the

onset of decoupling between galleries. For a tensionless membrane,

kgT
2\1/2 __ B
(u?)Y _,/4ﬂ3de (3.16)

We can therefore expect to find registry between galleries, only if

kBTd

Ay >
0~V 4r3k

(3.17)

In the next section we will show how this condition is indeed satisfied for certain

choices of parameters governing the membrane profile.

Molecular free energies

The free energies per lipid molecule in the four lipid-containing phases were al-
ready described in Eq. 3.7. They include contributions from the electrostatic,

elastic and mixing contributions. We reiterate these expressions for each phase
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to emphasize their dependence on the different variables:

fu(bu) = [ en, ou) + [ (dr) + ™ (P
fs(d, ds) = f(0, 05) + f&°(d, ps) + [™ (s
f5(85) = f0,05) + f5(05) + f" (45
fr(or) = f'(er, dr) + [ (¢r) + [ (¢r

~— ~— O e

(3.18)

Using these expressions in Eqs. 3.3 and 3.6 we can calculate the formation free
energy, AF, for any specific partitioning of the DNA and lipids (both cationic
and uncharged) among the different phases. Minimizing AF with respect to the
seven concentration variables in this expression we obtain the number, nature

and compositions of the phases corresponding to a system with given p and ¢.

Approximations of the model

The systems modeled in the present study are very complex, both with respect to
the number of relevant degrees of freedom and the variety of contributions to their
free energies. Thus, the theoretical analysis of their phase behavior necessarily
involves quite a few assumptions and approximations. Let us briefly review the
most important approximations and their possible consequences.

The model involves several simplifying assumptions pertaining to structure of
the phases considered. For instance, treating a double stranded DNA as a rigid
cylindrical rod with negative charges uniformly distributed over its surface we
ignore the groove structure and the discrete distribution of phosphate charges as
has been discusses in Chaps. 1,2. Ignoring the molecular structure of water, the
finite size of the counterions, and using the continuous, mean-field, PB approach
to calculate the electrostatic energies of these complexes are additional approx-
imations. Still, using this approach to calculate the phase structure and phase
behavior of lamellar complexes we obtained good agreement with experiment.
This agreement may be attributed to the fact that some features of the model
are robust, e.g., the occurrence of the free energy minimum at the isoelectric
point.

Here, the same structural and electrostatic free energy assumptions are used
consistently to analyze phase transitions between phases of markedly different
symmetries, e.g, the Hf and LY phases. Even though we use approximate theo-
ries, the resulting phase behaviors are quite complex, and strongly dependent on
the elastic and electrostatic properties of the lipid mixture. Although our theo-
retical model does not include all possible free energy contributions, it certainly

captures the chief features of the relevant phase diagrams. It may fail to predict
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the exact locations of phase boundaries, but not the nature of the phases and
phase transitions observed, which is our main goal in this work.

One can also argue, for instance, that PB theory is inappropriate for con-
sidering the counterion distributions within the narrow aqueous confines of the
lamellar or hexagonal complexes. Yet, our calculations reveal that whenever these
structures appear in solution their net fixed charge is generally very small, i.e.,
the complexes are nearly isoelectric. Consequently, the counterion concentration
within the narrow aqueous regions is typically small, in which case PB theory
provides an adequate approximation, (subject of course to the approximations
used to describe the structure of the charged surfaces).

Our model involves various other approximations. For example, we ignore
conformational entropy contributions associated with the (very small) flexibility
of double stranded DNA or the curvature fluctuations of the lipid layers. Yet,
these contributions are negligible compared to the electrostatic or elastic free
energy differences between the various phases. (For instance, the conformational
entropy of DNA is of order 1 kgT per DNA persistence length ([, ~ 500A)
whereas the electrostatic and elastic energies are of order 1 kg7 per 1A).

Assuming ideal mixing of the lipids in the various phases (except the LY), as
well as our simple model for the spontaneous curvature of the mixed lipid layers,
represent additional approximations. On the other hand it should be remem-
bered that uncertainties are also involved in the values of the elastic constants of
even the best studied lipid systems. Albeit, it is clear that lipids preferring the
hexagonal symmetry must have very different spontaneous curvatures from those
which self-assemble into lipid bilayers. The model calculations presented in the
next section aim to account for qualitative differences on this level, rather than

those resulting from small variations of the elastic constants.

3.3 Results and discussion

The most interesting and relevant phases in lipid-DNA mixtures are of course the
lipoplexes. Our model accounts for the two most important structures, namely,
the HY and LS phases. In both phases the DNA and lipid layers are tightly
associated, yet the complexation geometries are qualitatively different. These
differences imply different electrostatic stabilization energies and different depen-
dencies on the elastic properties of the lipid layers and their composition.

The goal of the forthcoming analysis is to provide a theoretical scheme for
predicting the conditions favoring one lipoplex phase over the other or, possibly,
the coexistence of both structures. The term 'conditions’ refers here to the elastic

properties of the lipid monolayers on the one hand, and the relative amounts of
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HL, CL and DNA in solution, i.e., p and ¢, on the other.

As we shall see below, the phase diagrams of CL/HL/DNA mixtures may
exhibit rather complex behaviors, involving a variety of phase transitions and
coexistence regimes. To assist the interpretation of these phase diagrams we
begin the discussion with two preparatory subsections. In the first we compare
the electrostatic free energies of the two complex phases, as a function of lipid
composition and lipid/DNA ratio. The second subsection is concerned with the
effects of electrostatic interactions on the relative stabilities of the pure lipid
phases, L, and Hy;. We then discuss the effect of membrane corrugations on
the LY complex stability, before discussing the phase behavior of CL/HL/DNA
mixtures.

All the calculations presented below were carried out for ng = 4mM, (Ip =
50 A). Similar phase behaviors correspond to lower salt concentrations. Sig-
nificant differences are expected only at very high salt contents, that is, when
the Debye length becomes considerably smaller than the dimension of a typical

lipoplex unit cell. In this limit, however, the complexes become unstable.

3.3.1 Electrostatics of the Hf; and LS phases

In our phase diagram calculations the radius of the lipid headgroup surfaces in
the HS phase is kept fixed at Ry = Rp + 6 = 13 A. Tt is instructive however
to examine how the electrostatic free energy of this structure varies with ¢ and
¢mr. In Fig. 3.2 the electrostatic free energy per hexagonal unit cell, ff{s, is shown
as a function of ¢y for four values of the water gap thickness; § = 0.5, 3.0, 8.5
and 15.0 A. (The lowest value of § is unrealistic, as we must allow for at least
a minimal water layer, which we set equal to § = 3 A. It is shown only for

comparison.) Note that

7 (om) = 2n((Rp + 6 + h) /] {7 (én1) (3.19)

where f§ is the electrostatic energy per lipid molecule in the HS phase. For
Rp+3+h=19A and a = 70 A> we have fe /e ~ 1.7A
For all 0 we find that the free energy fff(m]) is minimal at, or very near, the
isoelectric point. At this point ¢y is given by
a

* = . 3.20
Pu 2m(Rp + 6 + h)l (3.20)

as marked by the vertical dotted lines in Fig. 3.2. The minima of f¢ are more
pronounced and occur closer to the isoelectric point for the smaller values of §.
The dashed curve in Fig. 3.2 denotes the electrostatic energy according to the

capacitor model mentioned in the previous section. This is the free energy of a
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Figure 3.2: The electrostatic free energy, Afj, of the Hﬁ complex per hexagonal unit
cell (of length 1A) for 6 = 0.5A (a), 6 = 3.0A (b), d = 8.5A (¢), and § = 15.0A (d). The
dotted lines indicate the compositions, ¢7;, for which the HS structure is isoelectrical.

The dashed curve corresponds to the free energy, f""“’((ﬁH = ¢%), according to the
capacitor model, as given in Eq. 3.21.

concentric cylindrical capacitor, composed of an inner surface of radius Rp = 10A
and an outer surface of radius Ry = Rp+0, with water as the dielectric medium.
The charge densities on these two surfaces are —e/27lRp and e¢g/2nl(Rp + 0),
respectively. The charging energy, per 1 A, of this capacitor is

reap

H _ l—Bln Rp+6
kgT [? Rp

(3.21)

with & = a/27l¢y — (Rp + h).

For § < Ip (recall I = 50 A) the minimum in the PB free energy exactly
coincides with the simple capacitor model (curves (a) and (b) in Fig. 3.2), indi-
cating that the surface charges are not screened by counterions. Namely, all the
excess (diffuse layer) counterions have been expelled into the bulk solution. The
capacitor model becomes less adequate as d approaches [. Correspondingly, the
minimum of f}? is shifted from ¢% to ¢y < ¢J, i.e., to a lower charge density
of the outer surface, thus reducing the charging energy. The minimum of f}?
increases, reflecting the less efficient charge neutralization associated with the
increasing value of 4.

Unfortunately, the simple capacitor model is valid only at the isoelectric point.
For ¢ # ¢3; we need the PB equation to calculate the electrostatic energy. When
the surfaces are not equally charged, counterions must be present in the aqueous
gap to ensure electrical neutrality. As mentioned in Sec. 1.6, the reduced entropy
of these counterions results in a repulsive interaction (disjoining pressure) between

the apposed surfaces (Ninham & Parsegian, 1971). To a good approximation this
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energy is equal to the capacitor energy plus the excess charging energy of the lipid
surface (when ¢y > ¢%) or the DNA surface (when ¢y < ¢%), i.e., the charging
energy of the relevant surface by the amount of charge ¢y — ¢%,.

Hereafter, when referring to the HS phase we shall consistently use § = Ry —
Rp = 3A. In addition to being the electrostatically most favorable configuration
this 0 also corresponds to minimal chain stretching (frustration) energy in the
inverse-hexagonal symmetry. The isoelectric point corresponding to § = 3 A, h=
6 A and a = 70A” occurs at O = ¢y = 0.345.

Let us now compare the electrostatic energies per unit cell in the Hj and LS
complexes. In analogy to f;‘}s in Eq. 3.19 we define f‘gs as the the electrostatic

free energy per 1 A of the LS unit cell,

$'(6s) = (2d/a) f§ (5) (3.22)

where 2d/a = Ng/(IMg) = ps/l¢s.

In Fig. 3.3 we show fgs as a function of the fraction of charged lipid in the
complex, ¢g, for several values of the DNA-DNA spacing d (Chap. 2). Also shown,
(broken curve), is the electrostatic free energy of the HS phase for § = 3 A,
(curve (b) in Fig. 3.2). The curves marked (a)-(d) in Fig. 3.3 correspond to
lamellar complexes containing exactly the same number of lipids per unit cell
as those marked (a)-(d), respectively, in Fig. 3.2, which describes the hexagonal
complexes.

As for the HY phase, for all values of d, the minima of fgs occur at the
isoelectric point (¢s = ¢% = a/2ld) or its immediate vicinity. However, unlike in
the HY phase, where the minima vary markedly with the unit cell dimensions (i.e.,
d), the minima of f;s are nearly equal for all d. The reason for that is the ability
of the CL/HL lipid layers in the LS complex to polarize their charge density
(“demix” the lipid distribution) so as to achieve close contact with the DNA
charges. The demixing entropy penalty associated with this charge modulation
is very small compared to the gain in electrostatic energy.

Two important conclusions can be derived from the results shown in Fig. 3.3.
First, the LS complex can respond to changes in lipid composition by varying the
DNA-DNA distance, maintaining its electrostatic energy close to its minimum.
Second, the global minimum of the electrostatic free energy of the Hf phase
is lower than that of the LS phase. The difference is a direct consequence of
the different complex geometries. In the Hf; phase all lipid charges are close
to the DNA charges. On the other hand, in the LS phase only a fraction of the
cationic lipids are close to the DNA strands, the rest are necessarily farther away,
contributing less efficiently to charge neutralization.

From Fig. 3.3 it is also apparent that the “electrostatic dominance” of the HS
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Figure 3.3: The electrostatic free energy of the L complex per unit cell (of length
1 A), as a function of the CL mole fraction, ¢g. The solid curves correspond to five
representative values of the DNA-DNA spacing: d = 51.8 A (a), d = 59.7 A (b),
d="T10A (c),d =974 A (d), and d = 35.0 A (e). (The minimal value of d is
d=2Rp+ 6 =23 A.) For comparison we also show (broken curve) the electrostatic
energy of the hexagonal complex, f&(¢y), for § = 3 A (curve (b) in Fig. 3.2). Note
that a given d implies a given number of lipid molecules in the LY complex. The solid
curve (b) and the broken curve correspond to the same number of molecules (per unit
DNA length) in the lamellar and hexagonal complexes, respectively.

complex is limited to a finite range of compositions around its isoelectric point.
Consider first the two curves marked (b) in Figs. 3.2 and 3.3, the former is shown
again (dashed curve) in Fig. 3.3. Both curves correspond to the same number
of lipids per unit cell. Thus, the difference between these two curves represents
the free energy change associated with the complete transformation of an H$
unit cell into a LY unit cell, containing the same number of lipids at the same
composition, ¢ = ¢y = ¢5. Comparing fff with fgs we find that, electrostatically,
this complete transition is favorable only for ¢ < 0.15 (where curve (b) crosses
the broken line). Recall however that the lamellar complexes can lower their
free energy by adjusting their DNA-DNA spacing, and hence the number of lipid
molecules in the unit cell. From Fig. 3.3 we conclude that when this additional
degree of freedom is taken into account (i.e., allowing the lamellar complex to shift
from one d curve to another) the electrostatic preference of the hexagonal complex
is limited to a considerably smaller range of lipid compositions. It should be
noted however that these considerations ignore the important effects of membrane
elasticity which may either narrow or widen the regime over which one phase is
more favorable than the other. They also ignore the important role of other

phases in the system.
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Figure 3.4: Left: Complex free energy as a function ¢ for Iy = 73 A(a),43 A(b),23 A(c)
for k = 1kgT and ¢ = c§ = 0. Right: Complex free energy as a function ¢ for [y =
73 A(a),43 A(b),23 A(c) for k = 10kgT and ¢} = 1/100 A, ¢§ = 0. The full line
corresponds to the corrugated complex, while the dashed line to the fully planar one.
For all curves, s = 1A.

3.3.2 The corrugated LE complex

Free energy

The effect of membrane corrugation on the complex free energy is greatest when
the membrane rigidity is small. In this case, the membrane can adjust its ge-
ometry to fit the apposed DNA molecule, achieving better electrostatic contact,
at a relatively small elastic energy cost. Fig. 3.4(left) shows the complex free
energy fc as a function of membrane composition ¢, for a soft membrane whose
(monolayer) bending modulus for both lipids is ¥ = 1k5T, and spontaneous cur-
vature of the HL and CL are ¢ = ¢§ = 0. Results are shown for three values of
complexed membrane length I,;; for all results in this section we set s = 1A. f,
is shown as a function of membrane composition ¢, for three values of [,;. Also
shown is the complex free energy corresponding to a system where the membrane

is kept planar.

As has previously been shown, in all cases a minimum in the free energy is
seen, corresponding closely to the isoelectric point of the complex. Moreover,
The difference between a complex with relaxed (corrugated) membranes, and a
complex with constrained (uncorrugated-planar) membrane is also largest at the
isoelectric point in all cases. Close to the isoelectric point most of the counterions
are already released into the bulk solution. Therefore, further gain in free en-
ergy can only be achieved by better charge and spatial matching of the apposed
surfaces, in order to optimize the electrostatic interaction energy. Thus, at the

isoelectric point the effect of corrugation (i.e., better fitting of apposed surfaces)
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Figure 3.5: L complex free energy as a function ¢ for Iy = 58A for the case of
allowed corrugations (dashed) and suppressed corrugations (dotted). Also shown is the
free energy of the hexagonal complex for the same amount of lipid (full line). In all
cases k = 1kpT and ¢} = ¢§ = 0. The arrows mark the points of intersection between
the free energy of the lamellar and hexagonal complexes.

on the complex free energy is most substantial. The largest gain in free energy
due to corrugations is ~ 0.25kgT. The gain from this added degree of freedom

for a unit cell of s = [, is therefore rather large (= 125kgT) .

When more rigid membranes form complexes, the gain in electrostatic energy
is expected to be much smaller, since the penalty for bending is large. The
membranes bend only slightly, and consequently the free energy is not changed
substantially. This can be seen in Fig. 3.4(right) which shows the complex free
energy for membranes with £ = 10kgT, as a function of membrane composition
¢ = ¢g, for three values of Iy;. In this case, ¢ = 1/100 A, ¢§ = 0 (modeling
a mixture of e.g., DOPC and DOTAP). Here, the gain in free energy following
corrugation is only on the order of 5kgT for a unit cell of length s = [,. Similar
results were obtained for membranes where the bending rigidity was £ = 10kgT
and ¢§ = 0, as before, but with ¢ = —1/25 A (close to the elastic constants
measured for DOPE (Gawrisch et al., 1992; Kozlov et al., 1994; Chen & Rand,
1997)).

Allowing for LY complex corrugation adds somewhat to its stability as com-
pared with the Hf; phase. Fig. 3.5 shows the complex free energy as a function of
membrane composition, ¢, for soft lipid membranes (k = 1kpT) and I,; = 58A.
We also show the free energy of a complex where corrugations are suppressed,
and the membranes are flat. In addition, the free energy of the HY phase, for
the same number of lipids as in the LS is shown. Since, in general, the spatial

corrugations lower the free energy of the lamellar complex, we can expect spatial



92

FrROM LAMELLAR TO HEXAGONAL COMPLEXES

Aq(A)

|y (R)

Figure 3.6: (a) Ag as a function of Iy, for ¢ = 0.25 (full), 0.5 (dotted),0.7 (dash-
dotted) for k = 1kgT and ¢} = c§ = 0. The unshaded area corresponds to Eq. 3.17.
(b) Ag as a function [; for ¢ = 0.25 (full), 0.5 (dotted), 0.7 (dash-dotted). & = 10kpT,
06’ =1/ 100A and ¢ = 0 The unshaded area corresponds to Eq. 3.17. In all cases, the
calculated values are designated by full symbols. The lines are guides for the eye.

modulations to play a role in stabilizing the LS phase with respect to the H
phase. This is reflected in the positions at which the free energy curves for the
LS and HY cross when corrugations are allowed, and when they are forbidden.
We see that the region along ¢ in which the hexagonal complex is more stable
than the lamellar one is narrower for the corrugated complex. We expect the
phase boundary to follow this trend as well. The region where the hexagonal

complex will be found is expected to be smaller.

Corrugation amplitude

The free energy was determined for for several systems as described in Sec. 3.2.3.
We first consider a soft membrane, k = 1kgT, with cf = ¢§ = 0. The extent of
corrugation at equilibrium, Ag, as a function [y, for several values of ¢ is shown
in Fig. 3.6a. The unshaded area corresponds to the range given by Eq. 3.17.
The maximal corrugation occurs for membranes of low ¢. When the mem-
brane is of low charge, the proper matching of the DNA molecule and membrane
becomes more important for obtaining maximal counterion release. This match-
ing can be achieved both by charge density modulations and by corrugations.
Therefore, we expect that if the cost of bending is not too great, the highest
modulation will be observed for the membrane of lower ¢. In all cases a maxi-
mum in the corrugation can be observed at a certain l5;. This 3, closely (but
not exactly) matches the isoelectric point. At the isoelectric point, the proper
release of counterions to solution ultimately depends on the geometrical fit be-

tween macroions. It is also clear from Fig. 3.6a that a substantial corrugation
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Figure 3.7: Ay as a function [y, for ¢ = 0.25. The three curves correspond to:
k= 1kpT, cf = c¢§ = 0 (solid line); k = 10kpT, cf = 1/100A and c§ = 0 (dot dashed);
k = 10kgT, ck = —1/25A and c¢§ = 0 (dashed). In all cases, the calculated values are
designated by full symbols. The lines are guides for the eye.

is expected for only a limited range of [);’s, for which the corrugation is higher
than the expected membrane thermal undulations.

We next consider a more rigid membrane, k¥ = 10kgT, and with ¢ = 1/100A
and ¢ = 0. Fig. 3.6b shows the extent of corrugation, Ay, as a function [, for
the same values of ¢ as shown in Fig. 3.6a. Again, the unshaded area corresponds
to the inequality in Eq. 3.17. As expected, for all values of ¢, Ay is smaller than
for the soft membranes. The maxima are somewhat shifted to higher /5, values.
This is easily understood. Since k is substantially higher, the elastic deformation
energy cost is higher. When [, is larger, the (average) curvature is smaller for a
certain Ag. It follows that the membranes can deform at a relatively low energy
cost only when [, is large. Again, it can be seen that even when the membranes
are stiff, stable corrugations may persist for a certain [;; range. This is due to
the fact that both the thermal undulations and the corrugations are smaller for
membranes of higher k. Both these effects cancel each other out to a large extent.

A clear demonstration of the importance of the elastic contribution to the
modulation is a comparison of three different membranes all with the same ¢ =
0.25. In Fig. 3.7 three membrane types are compared, a soft membrane (k =
1kgT, ch = ¢§ = 0), a membrane with two lipid types of (nearly) vanishing
spontaneous curvature (k = 10kgT, ¢ = 1/100A and ¢§ = 0) and a membrane
with a HL characterized by a high negative spontaneous curvature (k = 10kgT,
ch = —1/25A and ¢ = 0).

Since the membranes corresponding to the three cases in Fig. 3.7 bear a rather
small charge density (¢ = 0.25), the effect of the uncharged lipid species is con-
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siderable. For membranes of a small bending rigidity - the modulation will be
large, as expected. More complex is the case where the bending rigidity is non
negligible (kK = 10kgT). In this case there is a pivotal role to the spontaneous
curvature of the lipid species. As can be seen, in the case where the HL has a high
negative curvature (¢ = —1/25A) the corrugation is suppressed completely (for
¢ = 0.25) while it is substantial (Ay ~ 2A) when the HL has a spontaneous cur-
vature of ¢f = 1/100A. The qualitative reason is as follows. Since charged lipids
tend to migrate towards the interaction zone with the DNA, the uncharged lipids
are expelled to the region outside the interaction zone. However, the monolayer
area outside the interaction zone is of positive curvature, so that placing a HL
with a negative spontaneous curvature in that region is unfavorable. Ultimately,
the system tends to suppresses corrugations when the spontaneous curvature of
the HL is highly negative, and the bending rigidity is substantial.

Charge density modulations

As has been shown in Chap. 2, charge density modulations can contribute sub-
stantially to lowering the complex’s free energy. Here, charge and curvature mod-
ulations are strongly coupled to each other. This is because each lipid species
has combined elastic (bending and spontaneous curvature) and an electrostatic
(charged or uncharged) properties. At equilibrium, the lipid arrangement (cor-
rugation and charge density modulation) will be determined by the optimum of
the free energy.

Fig. 3.8a shows the charge density modulation 7 as a function of the x coordi-
nate between two adjacent DNA molecules in the same gallery for a rather small
DNA-DNA distance, I,; = 28 A, and ¢ = 0.7 (very close to the isoelectric point).
The modulations are shown for three different membranes, corresponding to the
ones in the previous section. In general the trend towards charge matching on
the DNA and membrane is observed (0~ & 0.6) at the point of closest approach
between the membrane and DNA molecules (i.e., at z = 0 and z ~ 28 A). At
this distance the effect of the electrostatic interaction is strongest. Thus, charge
matching of apposed layers is most effective at this point, enabling a maximal
number of counterions to be released from the gap.

The charge density modulation is largest when the membranes are most soft,
which also corresponds to the case of largest corrugation. In this case the impor-
tance of charge matching (hence lowering of the disjoining pressure) is greatest,
since the membrane is wrapped more tightly around the DNA (A4, ~ 2.5 A for
the soft membranes vs. Ay ~ 0.5 A for the stiff membranes).

More intricate is the case for complexes formed of rather stiff membranes

(k = 10kgT), and where in addition the uncharged lipid molecules have a posi-
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Figure 3.8: (a) n as a function of z for ¢ = 0.7 and Ip; = 28 A. The three curves
correspond to: k = 1kpT, cf = c§ = 0 (dashed); k = 10kgT, ¢k = 1/100 A and cg=0
(solid); k = 10kpT, ch = —1/25 A and ¢§ = 0 (dotted). (b) 1 as a function of z for
¢ = 0.5and Iy = 43 A. The three curves correspond to: k = 1kpT, 06’ =c5 =0
(dashed); k = 10kgT, cf = 1/100A and c¢§ = 0 (solid); k = 10kgT, ¢} = —1/25A and
c§ =0 (dotted).

tive spontaneous curvature (c? = 1/100 A). For these, we find that the modula-
tions do not come to a maximum at the point farthest from the interaction zone,
i.e., at the midplane between DNA molecules (solid line in Fig. 3.8). In general,
when membranes are stiff, the elastic contribution to the free energy becomes
more dominant. Furthermore, in this case the uncharged lipid molecules pos-
sess a (rather low) positive spontaneous curvature, so that elastically it favours
the midplane, away from the DNA. However, the same (neutral) lipid species
also tends to be drawn towards the DNA molecule in order to achieve better
electrostatic charge matching between the DNA and membrane (at a certaint
elastic penalty). The optimum of the two contributions, electrostatic and elastic,
which in this case work agains each other, tends to supress the charge density
modulation. The results show that maximum charge density is found where the
membrane is most flat, reflecting ¢ = 0. The uncharged species resides both
in the negatively curved region (i.e, favorable electrostatic interaction, unfavor-
able elastic penalty) and in the positively curved area close to the midplane (i.e.,

favorable elastic interaction, unfavorable electrostatic interaction).

When [, is larger, the resulting modulation is somewhat less complex. Fig.
3.8b shows the charge density modulations for the same three membrane prop-
erties as before. This time ¢ = 0.5 and [, = 43 A, closely corresponding to the

isoelectric point.

The charge density modulations are smallest for soft membranes, where cor-

rugations are also more prominent. Charge matching, again, plays an important



96

FrROM LAMELLAR TO HEXAGONAL COMPLEXES

role in determining the charge density in the proximity of the DNA. Since the
wrapping of membrane around DNA for a substantial length of z implies a larger
interaction zone between DNA and lipid, a larger region is expected to fulfill the
charge matching tendency, and thus the change in charge density is the smallest.

When the membranes are more rigid, i.e. k£ = 10kgT', the spontaneous curva-
ture of the HL. becomes more important in determining the charge density mod-
ulations. Fig. 3.8b reviels that the modulations are largest for ¢& = 1/100A. For
this case, both the electrostatic and elastic considerations to lowering the free en-
ergy coincide. While the helper lipid is expected to be (electrostaticaly) expelled
from the interaction zone between DNA and lipid, it also has a (small) posi-
tive spontaneous curvature, which matches the curvature of the non-interacting

region, i.e., close to the midplane.

3.3.3 The L, — Hj transition

The phase behavior of lipid-DNA mixtures is strongly affected by the intrinsic
propensity of the lipids to form, in the absence of DNA, a particular lipid phase.
Lipoplexes are often prepared using helper lipids, such as DOPE, which under
physiological conditions form the Hy; phase, (Gawrisch et al., 1992; Kozlov et al.,
1994; Chen & Rand, 1997). These lipids are characterized by large, negative,
spontaneous curvature. Adding to the mixture cationic lipids, or more generally
lipids of small spontaneous curvature, will result in a first order transition to the
bilayer (L) phase at some well defined composition.

The major characteristics of this transition are demonstrated in Fig. 3.9 for
a CL/HL lipid mixture with the following elastic properties: c? = —1/25 A
and ¢; = 0 are the spontaneous curvatures of the helper and cationic lipids,
respectively; k = 10kgT is the bending modulus of both HL. and CL, h = 6A is the
distance of the head group charges from the pivotal surface, and f, = 0.35kgT is
the stretching-frustration free energy of the inverse hexagonal phase. The elastic
constants of the helper lipid correspond closely to those measured for DOPE and
mixtures of DOPE with other lipids (Gawrisch et al., 1992; Kozlov et al., 1994;
Chen & Rand, 1997).

The figure shows the free energies of the two phases, fg and fr, as a function
of the CL mole fraction. The lipid compositions at the transition are determined
by the common tangent construction. The free energies were calculated using
Eqgs. 3.18.

In the upper set of curves the free energies of the two phases include all the
relevant (i.e., electrostatic, elastic and mixing) contributions. To emphasize the

important role of the electrostatic free energy we also show the free energies
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Figure 3.9: The free energies per lipid molecule, fp and f; in the lamellar (L,) and
inverse-hexagonal (Hyr) phases, respectively, as a function of the lipid layer composition
¢. The upper set of curves display the free energies per molecule as given in Eq. 3.18.
In the lower set the electrostatic contributions to fp and f; are omitted (that is, only
the elastic, interstitial, and mixing contributions are included). The common tangent
construction and the coexisting compositions, ¢ and ¢p, are marked by broken lines.
The free energies were calculated for lipid layers with & = 10kgT, c§ = 0, c{} =-1/ 254,
fo=10.35 h=6A, and Ip = 50 A.

of these phases for a hypothetical, electrically neutral, mixture with the same
elastic properties. (In other words, in this calculation we have omitted f from
f). From these calculations it is apparent that the lipid charges enhance the
Hi — L, transition. That is, the transitions sets in at a smaller value of ¢. The
origin of the electrostatic destabilization of the Hy; phase is twofold. The mutual
repulsion between cationic charges in the highly curved cylindrical tube and the

strong confinement of the counterions within this tube.

3.3.4 Phase Diagrams

As in Sec. 3.3.2, we show in this section three representative lipid-DNA phase
diagrams, corresponding to CL/HL mixtures of qualitatively different elastic char-
acteristics, i.e., different sets of k, c§ and ch.

In the first system both lipids prefer the planar monolayer curvature, (ci =
¢§ = 0), and strongly resist curvature deformations (large k). The second system
features the opposite limit, corresponding to very “soft” lipid monolayers, i.e.,
k ~ 0. Besides the theoretical interest in this limit it should be noted that very
soft lipid layers (k < 1kgT) can be prepared, for example, by adding short chain
alcohols to the lipid mixture (Safinya et al., 1989; Koltover et al., 1998; Szleifer
et al., 1988). These added molecules may also enter the hexagonal voids of the

Hy; phase and relieve the chain stretching energy, (i.e., f, ~ 0). Clearly, for
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k = 0 the spontaneous curvature is irrelevant. Yet it should be noted that the
phase behavior observed for k£ = 0 is essentially identical to the one calculated
for k ~ 1kpT, ch = c§ =0, and f, = 0. The third, perhaps the most interesting,
case describes a lipid mixture in which the cationic lipid still prefers the planar
monolayer, (c¢§ = 0), but the helper lipid, such as DOPE, prefers the inverse-
hexagonal geometry, (ch = —(1/25) Afl). The phase behaviors of the three
systems are qualitatively different in both the nature of the lipoplex phases which
appear in solution and the complexity of the phase diagrams. They represent a
rather wide range of experimentally interesting systems.

The phase diagrams will be presented in the p, ¢ plane, the two (experimen-
tally controllable) intensive variables specifying the overall chemical composition
of the mixture. For each point in the p, ¢ plane, the number, nature, proportions
and chemical compositions of the coexisting phases are determined by minimiz-
ing AF, (Eq. 3.6), with respect to the seven independent concentration variables

defined by Egs. 3.3, 3.4 and 3.5. The minimization is carried out numerically.

Rigid planar membranes

We first consider a lipid mixture where i = ¢5 = 0. For concreteness we set

k = 10 kgT, a rather common value for many lipid monolayers (Lipowsky &
Sackmann, 1995). For these elastic constants, no hexagonal phases appear in
our calculated phase diagram. Thus, the value of f, which further increases the
free energy of these phases is irrelevant. (In fact, for ¢¢ = 0, f, = 0.35 kT
and h = 6 A identical phase diagrams are obtained for all monolayers with & >
2.5kpT.) An experimental system with similar characteristics is the lipid mixture
DOTAP/DOPC (DOPC) which exhibits only lamellar lipid and lipoplex phases
(Rédler et al., 1997; Radler et al., 1998). Lamellar complexes have also been
observed using other lipid mixtures (Templeton et al., 1997; Battersby et al.,
1998; Boukhnikachvili et al., 1997).

The phase diagram of the system considered is shown in Fig. 3.10. The
structural and thermodynamic characteristics of this, relatively simple, mixture
have been analyzed in detail, both experimentally and theoretically (see Chap. 2).
Below we briefly outline those features of the phase diagram which are relevant
for the forthcoming discussion.

Upon increasing p at constant ¢ the system evolves through three distinct
stages, (except in the narrow regime p < 0.1). At low values of p, lamellar com-
plexes coexist with an uncomplexed DNA phase. In this regime (SD in Fig. 3.10)
the DNA-DNA distance is constant d = d;(¢), (di(¢) increases with ¢). Once p
reaches a certain p = p;(¢) all DNA and lipid become complexed and the system

is monophasic. It remains monophasic as p increases until it reaches a second



3.3 RESULTS AND DISCUSSION

99

1.0

0.8
0.6

<

0.4
0.2

0.0

0.0 04 08 1.2 16 2.0

p

Figure 3.10: The phase diagram of a lipid-DNA mixture, for lipids which self-assemble
into rigid planar membranes. The phase diagram was calculated for membranes char-
acterized by 4 kpT < k < oo and cg = ¢j = 0. The symbols S, B and D denote,
respectively, the LS, L,, and uncomplexed (naked) DNA phases. (See Fig. 3.1.)

phase boundary, p = po(¢). Within the one phase region, which (except for
p < 0.2) includes the isoelectric point (p = 1), d increases linearly with p. When
p > pa, (d > da(4)), the system is again biphasic, with complexes coexisting with
an excess bilayer phase. It is important to note that in this (SB) regime, owing
to the possibility of lipid exchange, the lipid compositions in the complex and
bilayer are different, both depending on p. Also, d slowly decreases with p. ¢g,
¢p and d approach constant values at p > 1. In the context of this phase dia-
gram, the role of the isoelectric point can be better understood. While the point
p = 1 essentially always coincides with the minimum of the complex free energy,
it does not mark a special or obvious point in the complete phase diagram. In
fact it is not always even a one phase region (though it is for ¢ > 0.3).

The appearance of a small three phase region in the left-bottom (small ¢, small
p) corner of Fig. 3.10 is interesting theoretically, but of rather limited practical
interest. This is because at very low lipid charge densities, around ¢ < 0.15,
the electrostatic stabilization of the complexes is significantly reduced; the inter-
bilayer spacing h(¢) begins to increase and the lamellar aggregates eventually
disintegrate. Thus, our assumption that A is constant does not hold for very
small values of ¢, certainly not below ¢ ~ 0.1. Nevertheless, the existence of a
small three phase region cannot entirely be ruled out. Let us therefore briefly
explain its thermodynamic-energetic origin.

When p is small part of the DNA must be left uncomplexed. If all lipids
were complexed ¢g = ¢ is necessarily small. Suppose momentarily that this is
indeed the case, and that the complexes are essentially isoelectric. (Strongly

“overcharged”, i.e., not isoelectric, complexes are less stable.) Since ¢g is small
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Figure 3.11: The Phase diagram of a lipid-DNA mixture, for lipids which self-assemble
into very soft planar membranes. The phase diagram was calculated for membranes
characterized by £ = 0 and f, = 0. The symbols S, B, H and D, denote, respectively,
the LY, Lo, HY and uncomplexed DNA phases. (See Fig. 3.1.) The straight dashed
line marks the single (H{;) phase region.

d is large, implying poor DNA /lipid charge matching. The situation is improved
if the cationic lipids concentrate in the vicinity of the DNA rods. Yet, this
lipid segregation involves a nonzero demixing entropy penalty. As a result the
middle regions of the LS complex unit cell remains weakly charged implying an
energy penalty due to the mutual repulsion of the two apposed monolayers in the
complex. It is in fact this repulsion which drives the formation of a third, very
weakly charged, bilayer phase.

Hexagonal lipid-DNA complexes appear in certain regions of the p, ¢ plane as
soon as k or f, become sufficiently small, or when the mean spontaneous curva-
ture becomes strongly negative. These two cases are discussed in the following

sections.

Soft planar membranes

Although not very abundant some lipid membranes are characterized by small
bending rigidities of only a few kg7 (Lipowsky & Sackmann, 1995). Moreover,
the bending rigidity can be substantially reduced by adding short chain am-
phiphiles to the lipid mixture (Safinya et al., 1989). Upon lowering k one expects
the appearance of hexagonal lipoplex phases as indeed observed experimentally
(Koltover et al., 1998). Thus, our second phase diagram was calculated for the
limiting case k£ = 0, (in which limit the value of ¢, is irrelevant). We have also
set f, = 0. Qualitatively similar results were obtained with k£ ~ 1 kg7 and

c — .h
co = ¢y = 0.
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Figure 3.12: The change in the lipid compositions of coexisting phases upon increasing
p at ¢ = constant in the phase diagram shown in Fig. 3.11. Solid curves correspond to
¢ = 0.31 and dashed curves to ¢ = 0.6.

For “infinitely flexible” membranes the relative stability of the various pos-
sible phases is fully governed by electrostatics. Thus, for instance, owing to its
higher charging energy the Hj phase is always less stable than the L, phase.
On the other hand, as shown in previous sections, the HY phase is more stable
than the LS, but only for a certain range of lipid compositions. Thus, since the
electrostatic free energies of the different structures show different dependencies
on lipid (CL/HL) and lipid/DNA ratios, the phase diagram is determined by a
rather complex interplay between electrostatic energies and chemical composition

constraints.

The phase diagram for the system of interest here is shown in Fig. 3.11,
revealing a plethora of phase boundaries and coexistence regimes. Despite its

apparent complexity this phase diagram is not too difficult to explain.

Let us first point out some gross features of the phase diagram. When p is
small there are not enough lipid molecules to complex all the DNA strands. Thus,
on this side of the diagram we always find naked DNA (D) coexisting with either
S-type (LS) or H-type (HY;) complexes, or both. Similarly, at high values of p all
DNA is already complexed, and the appearance of an excess lipid (here bilayer)
phase is unavoidable. Also expected is the complete absence of an Hy phase.
Whenever lipids are expelled from complexes they prefer the, electrostatically
more favorable, bilayer (B) phase. We also note the existence of monophasic
regions. The sandwich complex (S in the figure) persists over a range of p’s
(at high @), reflecting the ability of this structure to tolerate changes in lipid
composition by adjusting the DNA-DNA distance, d. Recall that we have not

allowed a similar, structural, degree of freedom for the honeycomb structure (H).
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That is, we have imposed the structural constraint Ry = Rp + § = constant. If
all lipids and DNA are involved in H-complex formation this implies the linear
relationship ¢ = [a/2n(Rp + 0 4+ h)l]p. Thus, the monophasic H phase regime
shrinks to a straight line in the phase diagram, as indicated by the dashed curve
in Fig. 3.11. Had we allowed ¢ to vary, the H phase line would expand somewhat,
yielding a lens-shaped region.

In our discussion of the electrostatic properties of the L and H§ unit cells
we have concluded that a single Hf; phase becomes unstable with respect to a LY
phase once ¢g < 0.15. When the possible appearance of other phases is taken
into account, the HS phase may lose its dominance at even higher values of ¢y.
Indeed, in Fig. 3.11 we observe that the H phase line extends over the range
0.27 < ¢ < 0.57, indicating that the HY phase is partly dissolved, giving rise to
the appearance of two additional phases, (B and D at low ¢’s, B and S at high
¢’s).

To interpret the more subtle features of the phase diagram it is important to
bear in mind that whenever two (or three) lipid-containing phases are in equi-
librium with each other, their lipid compositions are generally different. The
compositional degrees of freedom allow the system to minimize its free energy by
optimizing the lipid compositions of the possible phases. To demonstrate these
notions let us follow the phase evolution of the system as we increase p, keeping
¢ = constant. Fig. 3.12 describes the changes in the lipid compositions of the
evolving phases along two such lines, ¢ = 0.31 and ¢ = 0.60.

Along ¢ = 0.31 (solid lines in Fig. 3.12) we always find the H§ phase.
From Fig. 3.3 we know that for ¢ = ¢y = 0.31 the HY complex is more sta-
ble than the alternative lipoplex phase, LY. Thus, at low values of p all lipids
are accommodated in hexagonal complexes (hence ¢y = @), coexisting with
uncomplexed DNA, (region HD in Fig. 3.11). Upon increasing p a point is
reached where all DNA and lipid are complexed. For ¢ = 0.31 this happens
at p = 2rm(Rp + 6 4+ h)l/a = 0.9. This point lies on the H phase line in
Fig. 3.11. Immediately beyond this point another, bilayer, phase begins to ap-
pear. Since the HY; complexes are most stable at isoelectricity, ¢ = ¢ = 0.345,
they tend to increase their CL content from 0.31 to 0.345. The presence of the
extra, bilayer, phase allows them to do so by trading CL’s for HL’s with the
bilayer, as clearly seen in Fig. 3.12. In fact, for 0.9 < p < 1 nearly all charged
lipid are used to increase ¢y towards ¢}, implying a very weakly charged co-
existing L, phase. Once the HY phase has reached its optimal composition ¢%
(at about p ~ 1) it further takes up only a small fraction of cationic lipids to
ensure the same chemical potential in both the LY and HY] phases. Finally we

note that the phase evolution scenario along ¢ = 0.31 is quite similar to the phase
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progression observed in Fig. 3.10 (for most values of ¢). Namely, a two phase
(complex/DNA) region, followed by a one phase (complex) region and then again
a two phase (complex/bilayer) region. The only difference is that the LY complex
is replaced here by the Hf; complex. In Fig. 3.11 the one phase region shrinks to
a line, because the hexagonal complex does not possess any structural degrees of
freedom.

Richer phase evolution is encountered as p increases along the ¢ = 0.6 line,
(dashed curves in Fig. 3.12). In this case the first complexes to form (i.e., at low
values of p) are lamellar aggregates. This follows from the fact that at high CL
concentrations the LY phase is more stable than the Hf; phase. From Fig. 3.3 we
know that for ¢ = ¢g = 0.6 the DNA-DNA distance in the lamellar complexes
must be small, we find d = 28 A. At p ~ 0.9 all the DNA is complexed and only
LS aggregates are present in solution. For ¢ = 0.6 this single phase region (S
in Fig. 3.11) is very narrow, ending at p ~ 0.95. Within this region d = pa/l¢
increases linearly with p and ¢g = ¢ = 0.6 is constant. From Fig. 3.3 we recall
that as d increases (at constant ¢) there should be a point where the HS complex
becomes more stable than the LS complex. Thus, an L — H{ transition should
take place at a certain p, even if ¢pg = ¢y = ¢ = constant. Owing to the
fact that ¢g and ¢y need not be the same, the HS phase appears already at a
smaller value of p. The initial composition of the HY phase is ¢y ~ 0.35. As
p increases further within the HS coexistence region (0.95 < p < 1.5) both ¢y
and ¢g increase, implying “overcharging” of the complexes by cationic lipids.
Eventually, at p ~ 1.5 the lipids prefer the formation of a separate bilayer phase
(of composition ¢ = 0.6) rather than joining and continuing to overcharge the
DNA-lipid complexes.

Koltover et al. (1998) have studied experimentally the phase progression along
the isoelectric “dilution line” (lowering ¢ at p = 1) in a system of soft lipids. Our

calculations agree with their results.

Curvature-loving membranes

The last lipid mixture considered here is characterized by the elastic constants:
k=10kpT, c5 =0, ct = —-1/25 A, and an interstitial energy of f, = 0.35 kgT.
In this system the helper lipid (such as DOPE) prefers the curvature of the Hy
phase. Yet, because the cationic lipid prefers the planar geometry and because
in the hexagonal geometry both lipids must pay the chain stretching penalty, f,,
the elastic energy difference Afe(¢) = ff(d) — fi(o) = fi(p) — f&(¢) may
be either positive or negative, depending on the lipid composition ¢. (Recall
that the elastic energies of the lamellar complexes is equal to that of the planar

bilayer. Similarly the elastic energy is the same for both hexagonal phases.) More
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Figure 3.13: The phase diagram of a lipid-DNA mixture involving “curvature-loving”
helper lipid, that is: cg = —1/25 A. The other elastic constants are k = 10 kT,
fo =035 h=6A, and ¢y = 0. The symbols S, H, B, I and D denote, respectively,
the LS, Hir, La, HS, and uncomplexed (naked) DNA phases. The broken line marks
the single HICI phase.

explicitly, using Eqgs. 3.8 and 3.9

AfNP) = (ak/2)erlen — 2¢o(0)] + fo
~ 1.47¢—0.154 (3.23)

The second equality is obtained by substituting the values of the the elastic
constants mentioned above as well as a = 70 A” and ¢y = —1/(Rp + 6+ h) =
-1/19 A. From Eq. 3.23 it follows that, elastically, the planar geometry is pre-
ferred over the inverse-hexagonal geometry for all compositions exceeding ¢ =~ 0.1.
(The pure helper lipid, ¢ = 0, indeed prefers the inverse-hexagonal geometry.)
Recalling that the electrostatic energy of the Hy; phase is always larger than that
of the L, phase, a DNA-free inverse-hexagonal is only expected to appear at very
low values of ¢.

On the other hand, around the isoelectric point of the Hf phase its elec-
trostatic energy is lower than that of the LS phase; i.e., Af®(¢) = f&(¢) —

&(p) < 0 around ¢ = @5 ~ 0.35. From the results shown in Fig. 3.3 we
find Afe(¢%) ~ —0.5 kgT, whereas from Eq. 3.23 Af(¢%) ~ 0.35. Thus
Af(dy) = Afe(d%) + Af(ey) < 0, indicating that just around ¢% the hexag-
onal complexes are more stable than the lamellar ones. Yet, this situation quickly
reverses as ¢ deviates from ¢7;. Thus, around the isoelectric point, p = 1, where
all DNA and lipid molecules tend to associate into complexes we should expect
the appearance of HY; complexes when the total lipid composition, ¢, is close to

¢*; and lamellar complexes at high values of ¢. The CL-DNA complexes formed
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Figul:e 3.14: The change in the lipid compositions of coexisting phases upon increasing
p at ¢ = constant in the phase diagram shown in Fig. 3.13. Solid curves correspond to
¢ = 0.16 and dashed curves to ¢ = 0.47.

in other regions of the p, ¢ diagram will be dictated by the optimal partitioning

of the lipids between the various possible phases.

These qualitative considerations are corroborated by the phase diagram shown
in Fig. 3.13. For example, in accordance with the above arguments, we note that
the region over which all lipids and DNA are involved in the formation of a
(single) HY phase is extremely narrow, corresponding to the short dashed line
(H) passing through p = 1,¢ = ¢% = 0.345. The phase behavior around this
point is also interpretable. As ¢ increases (at p ~ 1) a small region appears
(HS) where lamellar and hexagonal complexes coexist in solution. In this region
the HS complexes maintain their optimal composition ¢% = 0.345 whereas the
LS complexes, whose energy is rather insensitive to lipid composition (Fig. 3.3),
accommodate all other lipids. As we go in the opposite direction, i.e., lowering ¢
(hence enriching the system with HL’s) at p ~ 1 we enter the HI regime where H§;
complexes coexist with an Hyy lipid phase. Here, again, the Hf; phase maintains
its optimal composition while the added helper lipids organize in their favorable
hexagonal phase Hy. The Hy; phase appears, as expected, in all the low ¢ regions

of the phase diagram.

In the high ¢ regime (¢ > 0.5) the lipid mixture is rich in CL molecules
implying, by Eq. 3.23 and Fig. 3.2, that the LY phase is more favorable than
the Hf phase, both elastically and electrostatically. Similarly, the L, phase is
preferred over the Hy; phase. Thus, for ¢ > 0.5, as p increases at constant ¢, we
observe the same phase progression, SD — S — SB, as we found in Fig. 3.10 (and
in Fig. 3.11 for very large ¢). Somewhat less obvious, yet not difficult to explain,
is the phase behavior on the low p side of the phase diagram (say p < 0.6). In this
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region there are not enough lipids to complex all the DNA. At high ¢’s the LY
phase is more stable than the HS phase and hence naked DNA (D) coexists with
lamellar (S) complexes. For ¢ ~ 0.35 the hexagonal complexes are more stable
that the lamellar ones, yet the system prefers the lamellar complexes because,
by increasing d, they enable complexation of larger amounts of DNA. Finally, at
the bottom-left corner of the phase diagram (low p, low @) we observe a three
phase coexistence regime where lamellar complexes (S) coexist not only with an
excess DNA phase (D), but also with an hexagonal lipid phase (I). The hexagonal
lipid phase consists, essentially exclusively, of neutral helper lipids which not only
prefer the hexagonal geometry but also do not contribute to the stability of the
lamellar complexes. Thus, the lamellar complex phase is enriched by cationic

lipids, as we shall see in Fig. 3.14 below.

More complex phase behavior is observed in the region p > 0.7, ¢ < 0.5 of
the phase diagram, exhibiting the appearance of Hf complexes (H), coexisting
with various other phases, depending on the exact lipid composition and lipid
to DNA concentration ratio. The origin of this behavior is the delicate interplay
between elastic and electrostatic contributions to the free energies of the L and
HS phases, and the ability of the Hy and L, phases to serve as a lipid source
(or “dump”). Some of the features characterizing the right-bottom “quarter”
of the phase diagram have already been explained when we discussed the phase
behavior around p = 1 and ¢ = ¢%. Additional aspects of this behavior become
clearer when we follow the changes in lipid compositions of the various phases

along ¢ = constant lines.

In Fig. 3.14, we follow the phase progression along two, relatively low, ¢ =
constant lines; ¢ = 0.16 and 0.47. The ¢ = 0.16 line starts at the three phase,
SID, region, where lamellar complexes of composition ¢ ~ 0.23, (i.e., their CL
content is larger than the total CL percentage in the system), coexist with an
hexagonal lipid phase composed of HL only (¢; ~ 0) and an excess DNA phase.
At p ~ 0.6 all the DNA is complexed. Then, over a narrow range of p, the
added lipids continue to redistribute between the pure-HL hexagonal phase and
the lamellar complexes whose CL content increases slightly to ¢g ~ 0.25. At p ~
0.7 hexagonal complexes coexist with the lamellar ones, the latter disappearing
at p ~ 0.9, where ¢y ~ 0.3. From p ~ 0.9, ¢y increases linearly reaching
its isoelectric value ¢, = 0.345 at p = 1. Beyond this point ¢y = ¢}, stays
essentially constant as p increases, i.e., all the DNA is packed in isoelectric Hf
complexes. The excess lipids are arranged in one or two lipid phases. Just above
p =1, and as long as ¢; < 0.02 the lipids organize in the Hy; phase; ¢; = 0.02
marks the onset of the Hy; — L, transition, as shown in Fig. 3.9. At coexistence,

the composition of the L, phase is ¢ ~ 0.07, as dictated by the common tangent



3.4 CONCLUDING REMARKS

107

construction. The Hyy — L, transition is completed when p ~ 1.5, from which
point all the excess lipids go into bilayers. As p — 0o, ¢ — ¢ = 0.16.

The phase progression along the ¢ = 0.47 line can be analyzed similarly. One
point of special interest here is the reentrant transition S — HS — S which, for
¢ = 0.47, begins at p ~ 0.9 (where the H= HY phase appears) and ends at
p =~ 1.2 (where the H phase disappears).

To conclude, in a lipid DNA mixture containing curvature-loving helper lipids,
hexagonal complexes are expected to be formed when the cationic lipid content
is relatively low and the lipid to DNA ratio is high. In this region the system can
optimally adjust the lipid composition of the complexes, expelling the rest of the

lipids into excess lipid phases.

3.4 Concluding remarks

Following recent experiments (Koltover et al., 1998) and qualitative theoreti-
cal predictions (May & Ben-Shaul (1997); Chap. 2) we have presented here a
rather detailed analysis of the structural and thermodynamic characteristics of
DNA/CL/HL mixtures. This analysis should be useful for the interpretation of
future experimental studies and may be relevant for the design of a particular
lipoplex geometry.

We have shown that the elastic properties of the lipid membranes used as
the lipid source for DNA condensation play an important, albeit not exclusive,
role in determining the preferred aggregation geometry of the lipoplex. Quali-
tatively, using mixed planar membranes (i.e., large vesicles) as the lipid source,
the lamellar complex is the optimal structure provided the membranes are rigid.
On the other hand, with soft, or “curvature frustrated membranes” as the lipid
source the preferred aggregation geometry is generally provided by the inverse-
hexagonal complex. By frustrated membranes we refer here to bilayers composed
of monolayers characterized by negative spontaneous curvature, as is the case for
instance with DOPE as the helper lipid. We have shown how “intermediates” in
the form of a corrugated lamellar phase may also assemble when the membrane
is soft, but not soft enough to stabilize hexagonal structures.

One must remember, however, that even more important than the elastic
properties of the lipid membranes are the electrostatic interactions between the
lipids and the DNA. Consequently, the preferred complexation geometry is gen-
erally dictated by a nontrivial interplay between the electrostatic and elastic
contributions to the complex formation free energy. Since both contributions
depend on the CL/HL composition different phases may be favored at different

lipid compositions. Still, knowing the lipid composition and the way it affects
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the relative stability of the lipid-DNA complex does not suffice to determine the
nature, number and proportions of the different phases which appear in solution.
This requires an additional, thermodynamic phase, calculation which takes into
account all the relevant compositional and structural degrees of freedom of the
various possible phases. Of particular importance in this context is the possi-
bility of lipid exchange between different phases. As we have seen, under most
conditions the CL,/HL/DNA mixture splits into two or even three phases, involv-
ing different proportions of the three chemical species. When more than three
components are present in solution the phase diagram will be even more complex.

Notwithstanding all these complexities our model calculations suggest that
anticipating some gross features of the phase diagram corresponding to a given
CL/HL/DNA mixture is not impossible. Namely, certain regions of the phase
diagrams can always be predicted with considerable confidence; e.g., the “corners”
of the p, ¢ plane and the single phase regions. Intermediate regions can often be
inferred by their bordering regions. Additional insights can be gained from our
three “generic” phase diagrams. We believe that these qualitative conclusions
are robust in the sense that they are valid despite the various approximations
involved in our theoretical model.

Finally, it must be emphasized that our calculations are only valid for systems
in true thermodynamic equilibrium. That is, we have assumed that the systems
considered had enough time to exchange lipid molecules between the various
possible phases, enabling the total free energy to reach its global minimum. Ex-
perimentally, this may not always be the case. Indeed, some experiments indicate
the formation of complexes whose symmetries differ from the two basic structures
considered here. At the same time, it is important to note that the observation of
two or three coexisting structures is by no means an indication that the system

is not already equilibrated.



Chapter 4

Adsorption of peripheral proteins

on mixed charged membranes

4.1 Introduction

After discussing at some length the nature of the (electrostatic) DNA-lipid in-
teractions, we now turn to study the interaction of charged peripheral proteins
with mixed membranes (see Sec. 1.5)." As we shall see, some important fea-
tures are common to the association of many rigid charged macromolecules with
membranes. Such is the effect of lipid mobility on the lipid-macromolecule asso-
ciation energy, and also the effect of (electrostatic) interactions between charged
macromolecules.

Much experimental and theoretical effort has been invested in the study of the
adsorption of proteins onto charged lipid membranes since many biological pro-
cesses, e.g., membrane activated enzymatic and signal transduction activity, occur
at the membrane surface. This adsorption is also a primary step in other pro-
cesses such as the formation of ion channels in cell membranes by self-assembled
amphipathic peptides.

A large number of experimental studies based mainly on fluorescence labeling
and NMR techniques reveal that the adsorption process may occur in several
stages (Birrell & Griffith, 1976; Boggs et al., 1977; Mayer et al., 1983; Haver-
stick & Galser, 1989; Bazzi & Nelsestuen, 1990; Gawrisch et al., 1993; Yang &
Glaser, 1995; Rytomaa & Kinnunen, 1996; Carbone & Macdonald, 1996; Hinder-
liter et al., 1998; Goldberg et al., 1998; Krylov et al., 2000; Bradley et al., 1992;
Denisov et al., 1998). First, the negatively charged (basic) proteins bind to the

!The results presented in this chapter were previously reported in May et al. (2000b) and
Harries et al. (2001).
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mixed, acidic and neutral lipid membrane. The fluid nature of the lipid bilayer
allows the lipid constituent which interact more favorably with the adsorbing pro-
tein (i.e, the acidic, positively charged component) to migrate laterally towards
the protein’s vicinity, thus modulating locally the lipid composition. Conversely,

the less favorably interacting (neutral) lipids, migrate away from this area.

Experiments also show that in some cases, adsorbed proteins and the un-
derlying anionic lipids may further colocalize into domains (or “rafts”). It was
further shown that the radius of curvature of these domains was, in some cases,
higher than that of the surrounding lipid. Domains were observed to bud and
pinch off in the form of vesicles (Galla & Sackmann, 1975; Hartmann et al., 1977,
Bradley et al., 1992). This process demonstrates the second mechanism by which
a lipid bilayer can lower the interaction free energy: by stretching and bending

the membrane can lower the interaction free energy with an adsorbing molecule.

The composition modulation in the underlying lipid bilayer due to lipid mi-
gration may be further enhanced by non-ideal lipid demixing. In general, such
modulations also contribute to an unfavorable gradient-dependent term in the
membrane free energy (“line-tension”). More explicitly, the non-ideal contribu-
tion to the membrane free energy may favor the segregation of adsorbed proteins,
in order to satisfy the natural tendency of the two underlying lipid species to
demix. Thus, the membrane can lower the free energy associated with “rims”
of the lipid domains, minimizing them by coalescing smaller domains into larger

ones, hence forming macroscopic lateral domains.

Retaining the main features of the model presented in Chaps. 2, 3, we consider
a model system for the adsorption of basic globular proteins on a membrane
containing varying proportions of acidic lipids. The protein is modeled as a rigid
sphere of low dielectric constant, with positive charges uniformly smeared over
its surface. This is a special case of the interaction between two, oppositely
charged, unequal spheres, which has recently been investigated within PB theory
for various boundary conditions on the spheres, accounting for constant charge
density, constant potential and ionizable surface charges (Ninham & Parsegian,
1971; Carnie et al., 1994; Warszynsky & Adamczyk, 1997; Palkar & Lenhoff,
1994; McCormack et al., 1995; Jonsson & Stahlberg, 1999). Lipid mobility is
accounted for through the use of a free energy functional, similar to the one
used in the previous chapters, which includes the relevant contributions. The
lipid charge modulation (or “polarization”) profile varies with the distance of the
protein from the membrane surface. In general, the deviation of the local charge
distribution from the average (say, uniform) distribution, increases as the protein

approaches the surface, becoming most pronounced at the equilibrium distance.

Another important factor affecting the charge modulation profile, as well as
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the adsorption free energy, is the lateral density of the adsorbed proteins, reflect-
ing the combined effects of protein-membrane and protein-protein interactions.
These interactions play a major role in determining the equilibrium density (“sur-
face coverage”) of proteins on the membrane, i.e., the adsorption isotherm; as dic-
tated by the equality of the protein chemical potentials on the membrane surface

and in the bulk solution.

The adsorption free energy and lipid distribution profiles are determined by
a minimization of the free energy functional with respect to both the spatial
distribution of the mobile counterions and the 2D distribution of the lipids in the
membrane plane. The minimization results in the familiar nonlinear PB equation
for the electrostatic potential in the system, supplemented by a special boundary
condition on the electrostatic potential at the membrane surface. reflecting the

requirement for a constant electrochemical potential of the membrane lipids.

As discussed in Chap. 2, our constant electrochemical potential boundary con-
dition is as an intermediate case between the two familiar boundary conditions
corresponding to surfaces of constant charge density and constant surface poten-
tial. As we shall see in the next section, in the (hypothetical) limit corresponding
to infinite lipid demixing entropy, this special boundary condition reduces to the
case of constant (“frozen”) charge density. In the opposite (again, hypothetical)
limit of zero demixing entropy penalty, the surface charges are fully mobile, as
if the membrane were a conductor, implying constant surface potential. The va-
lidity of the PB theory for treating the interaction between charged surfaces and

colloidal particles in aqueous salt solutions has been discussed in Sec. 1.2

Once the adsorption free energy has been evaluated as a function of protein
density, and using an appropriate model for the configurational entropy of the ad-
sorbed protein layer, one can calculate the chemical potential of the protein in the
adsorbed state, and hence the adsorption isotherm. We shall adopt here a simple
model for the configurational entropy of the adsorbed protein layer, resulting in
a Langmuir-like adsorption equation, but with coverage dependent adsorption
energy. Our main goal in presenting these isotherms is to demonstrate the im-
portant effects of lipid lateral mobility (“surface relaxation” or “annealing”) and
protein-protein interactions on the adsorption behavior of charged proteins on
mixed fluid layers. As we will show, this degree of freedom influences the binding
free energy and adsorption isotherms most substantially when the charge density
on the membrane is much lower than that on the protein (which is the biologically
most relevant case). Qualitatively, our conclusions should be relevant to a variety
of adsorption processes involving charged macromolecules; e.g, oligonucleotides,

colloidal particles or polyelectrolytes.

After presenting our model and results we will turn to comment in brief on
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other models that have been suggested to account for some or all of the mentioned

effects.

4.2 Theory

We model the proteins as positively charged spherical particles of radius R,
and the membrane surface as an incompressible 2D fluid mixture composed of
acidic and neutral lipids, both of the same headgroup area, a. The headgroup
of the acidic lipid carries a single negative charge. The membrane and proteins
are embedded in an aqueous solution containing a symmetric 1:1 electrolyte of
concentration ng, corresponding to the Debye length [,. The average charge
density of the lipid membrane is & = —¢e/a where e is the elementary charge
and ¢ is the (overall) mole fraction of charged lipids in the membrane. The
positive charge is assumed to be uniformly distributed on the surface of the
protein, with o, denoting the (fixed) surface charge density. One of the most
relevant variables in our model is X, = —o,/7, the ratio between the charge
densities on the protein and membrane surfaces; X. > 0 to ensure opposite signs
of the two macroion charges. For the purpose of presentation we find it convenient
to introduce the quantity ¢, = X ¢, expressing the “equivalent composition” of
the protein surface. That is, if the protein surface is regarded as composed of
(positively) charged and neutral groups, each of area a (identical to the lipid
headgroup area), then ¢, is the fraction of charged protein groups.

The equilibrium partitioning of proteins between the bulk solution and the
adsorption layer is dictated by the equality of chemical potentials in these two
phases. The chemical potential of the adsorbed proteins depends on their adsorp-
tion free energy and the 2D translational entropy, both depending on the lateral
density of the adsorbed layer. We shall first consider the adsorption free energy
and then describe our model for the protein chemical potential and adsorption

isotherms.

4.2.1 Adsorption free energy

When the surface density of adsorbate is low, inter-protein interactions are weak,
and the adsorption energy is nearly equal to that of an isolated protein. This
is the limit in which lipid demixing or, more precisely, local composition mod-
ulations, are expected to be most important, especially at low surface charge
densities (large X.). Protein-protein interactions become increasingly important
upon increasing the lateral density of adsorbate. On the average, a given adsorbed

protein is surrounded by a radially symmetric distribution of its neighbors. Based
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Figure 4.1: Schematic views of the Wigner Seitz cell: side (right) and top (left). The
central protein (identical to all others in our model) is coloured uniquely for clarity.

on this notion we shall adopt a mean-field scheme whereby every adsorbed pro-
tein defines a cylindrical cell whose main axis (which passes through the protein’s
center) is normal to the membrane plane. Its projection on the membrane surface
is a circular, Wigner-Seitz, cell of Radius R (R > R,) and area A = 7R?, as de-
picted in Fig. 4.1.  Cell models of this kind have been used to describe a variety
of electrostatic interaction phenomena in both two- and three-dimensional sys-
tems; e.g., the adsorption of divalent surfactants on solid surfaces (Strom et al.,
1999), the concentration polarization of colloidal particles at membrane surfaces
(Jonsson & Jonsson, 1996), the ionic atmosphere around spherical micelles and
other colloidal particles (Linse & Jonsson, 1982; Wennerstrom et al., 1982), and
the classical theory of Fuoss, Katchalsky and Lifson (1951; 1954) for calculating
the electrostatic free energy of hexagonally packed (rigid) polyelectrolytes.

Based on the cell model scheme one can calculate the adsorption energy as
a single particle property, with inter-protein interactions treated in a mean field
approximation. At the cell limits we have the boundary condition (0¢/0r)g = 0,
where ¢ is the electrostatic potential and r is the radial coordinate, measuring the
distance from the center of the protein in the z, y plane, parallel to the membrane
surface; as described in Fig. 4.2. The minimal distance of the protein surface
from the membrane plane, measured along the membrane normal axis (z) will be
denoted by h. Any point within the cylinder defined by the circular Wigner-Seitz
cell is specified by the three coordinates {r, z,9}, with 9 denoting the azimuthal
angle, see Fig. 4.2. By symmetry, n = n(r, z) is independent of ). Similarly, the
lipid composition profile around a given protein is a function of r (and h), but is
independent of .

The mean distance between adsorbed proteins, 2R, is dictated by their 2D
density, o oc 1/A oc 1/R?. Thus, the effects of protein lateral interactions on the
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Figure 4.2: Schematic illustration of a spherical protein adsorbed on a mixed planar
lipid membrane. The protein radius is R,, and its (uniform) surface charge density is
op. The minimal distance between the protein and membrane surfaces is h. A circular
membrane region of radius R (and corresponding area A = mR?) defines the basis of
the cylindrical “cell” corresponding to one adsorbed protein. n = n(r) is the locally
varying mole fraction of charged lipid in the interaction zone.

adsorption free energy enter our model through the dependence on R of the elec-
trostatic free energy per unit cell (or, per protein), F. Of course, this treatment
is approximate, because it neglects the positional (both angular and radial) fluc-
tuations of the protein 2D distribution. Note, however, that at very high surface
densities the proteins tend to organize into a quasi-crystalline hexagonal lattice,
as illustrated in Fig. 4.1. In this limit, where the lateral interactions are most
pronounced, the main approximation corresponds to assuming that the nearest
neighbor shell is perfectly circular rather than hexagonal. At low surface densi-
ties the lateral interactions and hence their effects on the adsorption energy, are
rather weak. In particular, when R — oo our model describes the adsorption of

an isolated protein.

The adsorption free energy, per protein, is AF = F(h = heq,0) — F(h =
00,0 = 0), where F(h,p) is the electrostatic (charging) energy of one protein
and a membrane of surface area A (as defined by the cylindrical cell volume
prescribed in Fig. 4.2) when the protein is at distance h from the membrane
surface and surrounded by identical neighbors at distance 2R o o~ '/%; heq is
the equilibrium distance of the protein, corresponding to the minimum value of
F'. The electrostatic potential, ¢, the local lipid composition profile within the
interaction zone, 7n(r), and the electrostatic free energy, F', are all functions of
h and depend, parametrically, on the the average lipid composition (¢), the size
(R,) and surface charge density (o,) of the protein, the salt concentration (ng),
and the linear dimension of the Wigner-Seitz cell, R. (Of course, 2R can be

interpreted as the equilibrium distance between the adsorbed proteins only when
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h = heq.) We shall calculate F, ¢, and n(r) based on the nonlinear PB theory,
thus neglecting the spatial correlations and finite sizes of the mobile salt ions. On
the other hand, we shall explicitly account for protein-induced modulations in the
lipid charge distribution, and protein-protein interactions. We shall assume that
in the “unperturbed” membrane (i.e., when h — oo or at r ~ R when R — o)
the acidic and neutral lipids are mixed ideally.

As in the previous chapters, our starting point is the free energy functional

for the electrostatic solution and the charged surfaces,

Fo_ 1 kBT

n+ln—+n lnn——(n++n_—2n0)]d

_I_
—~—

+ E/[ g n)lni:g ds
oo [ - - o= 0 as
w0 [w=o)ds (4.)

A

The first term in the last equation is the electrostatic energy of the system,
with the integration extending over the entire aqueous volume of the cylindri-
cal region corresponding to our unit (Wigner-Seitz) cell, (including the volume
“above” the protein). The second integral accounts for the translational (“mix-
ing”) entropy of the mobile ions (of local concentrations n, and n_), relative to
their entropy far away from the charged macromolecules where n, = n_ = ny;
within the interaction region ny = ni(r,z). The third and fourth integrals,
where n = n(r) = —eo(r)/a, represent the 2D (non-ideal) demixing entropy of
the lipid distribution; the integration extending over the membrane surface from
r=0tor =R (ds = 2rrdr). The (phenomenological, mean-field) interaction
parameter y accounts for a non-ideal mixing contribution to the free energy of
the lipid molecules. Non-ideal lipid mixing is commonplace in biological mem-
branes (Garidel et al., 1997; Garidel & Blume, 2000; Garidel & Blume, 1998),
resulting, for instance, from the different molecular structure of the lipid tails.

The last term in F' has been added to the thermodynamic potential to account
for the lipid charge conservation, namely, for the condition [ 4 nds = ¢A. The
Lagrange parameter, A, expressing the chemical potential of the charged lipid
is determined (following minimization of the system free energy) by the charge

conservation condition. The approximations made here, such as setting ¢ = 0
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inside the macromolecule, has been extensively discussed in the previous chapters
(see e.g., Sec. 1.3.5, Sec. 2.2.2).

The minimization of F' with respect to the mobile ion distributions in the
aqueous region, n.(r, z), and the mobile lipid charges in the membrane plane,
n(r), results in the familiar PB equation, Eq. 2.4, and a special boundary condi-

tion at the membrane surface. For y = 0 this boundary condition is

_exp@—=N)  _ Ip (3_¢>
S rexp( - 20 \ 07/ . (42

which should be solved self consistently with the PB equation. The second equal-
ity (where py = 27lglp/a), relates the local lipid charge density and the normal
derivative of the electrostatic potential at the membrane surface through Gauss’
theorem.

Two additional boundary conditions on v are

87/) o Xc¢p0 a_w —
(20)-a%om, (26 _, »

p r=R

The first of these conditions fixes the normal derivative of the reduced potential
at the surface of the protein, as implied by its uniform charge density o, =
eX.p/a = ep,/a. The second condition follows from our construction of the
Wigner-Seitz cell.

Returning to Eq. 4.2 we note that for large R (R > lp), i.e., low density
of adsorbed proteins, the local lipid composition far away from the adsorption
site should equal the unperturbed composition of the membrane, that is, n —
¢. Similarly, the membrane potential ¢ should equal the electrostatic potential
corresponding to an unperturbed membrane, 1y; ()9 = —2 arcsinh(¢p)). From
Eq. 4.2 we see that this implies A = 5. The limit just described corresponds
to the adsorption of a single protein on a lipid membrane which is in contact
with a lipid reservoir of composition ¢ and electrostatic potential 5. It can be
shown that the adsorption free energy energy in this system is, indeed, given by
Eq. 4.1 with A = ty. The last term in Eq. 4.1 then becomes ¢y [,(n— ¢) ds/a,
expressing the change in the electrostatic energy of the reservoir, associated with
the transfer of charged lipids into (or out of) the interaction zone.

The protein-induced lipid charge modulation is driven by the tendency of the
membrane charges to provide optimal charge matching conditions between the
membrane and protein surfaces. This tendency is opposed by the demixing en-
tropy penalty. The actual, optimal, lipid composition profile reflects the compro-
mise between these two conflicting tendencies. If no free energy price was involved
in lipid demixing, the lipid charges could freely move on the membrane surface,

lowering even further the electrostatic binding energy. This case, resembling a
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conducting surface, corresponds to a constant surface potential (2 = 0) = 1.
The free energy functional corresponding to this case is obtained by omitting the
lipid demixing term in Eq. 4.1 and replacing the boundary condition in Eq. 4.2 by
(z = 0) = 1)g. In the opposite limit the lipids are forced to maintain a constant
(“frozen”) composition throughout the membrane, implying 7 = ¢ in Eq. 4.1 and
replacing Eq. 4.2 by (Ip/2po)(0¢/0z),—9 = ¢. This is the limit of a solid mixed
membrane, appropriate for membranes below the chain melting temperature.

It will be interesting to compare the binding characteristics in the two limits
above to the ones derived from our model. we do so in Sec. 4.3.1, where the
adsorption free energies corresponding to constant-uniform lipid composition and
constant membrane potential will be denoted as AF, and AFy, respectively. We
obviously expect that AFy, < AF < AF, for all values of h and R. We will also
briefly examine the effect of non-ideal mixing (x # 0) in the adsorption process
(Sec. 4.3.5).

4.2.2 Adsorption isotherms

To examine the effects of lipid mobility and protein-protein interactions on the
thermodynamics of protein binding to mixed lipid membranes, we shall present,
in Sec. 4.3.2, several representative adsorption isotherms. Our main goal here is
to compare adsorption isotherms calculated with, and without, these effects taken
into account. Because there is no exact statistical-thermodynamic model for a
layer of electrostatically interacting particles (nor for such particles in solution)
we shall adopt here an approximate scheme, involving no adjustable parameters.
The finite size of the proteins and the strong electrostatic repulsions between
them, in the adsorbed state, are explicitly taken into account in our calculation
of AF. We shall not include in our model long range non-electrostatic (van der
Waals) attractions between the proteins, as these may vary from one system to
another and are generally weak compared to the electrostatic forces. Thus the
“energetic” contribution to the (Helmholtz) free energy of the protein surface
layer, s = & — TS, is given by & = N,AF, with N, denoting the number
of adsorbed proteins and AF = AF'(heq, R), the electrostatic adsorption energy,
per protein. The configurational entropy of the adsorbed layer will be modeled
using a 2D lattice gas model, whereby the membrane surface is regarded as a
(say, hexagonal) array of N adsorption sites, each of which can accommodate,
at most, one protein (thus accounting for excluded volume interactions). Using
6 = N,/N to denote the fraction of occupied sites, the configurational entropy is
given by the familiar expression, S; = —Nkg[0Inf + (1 — 6) In(1 — 6)]. Thus,

Fy =N {0AF(0; heg) + kT [01n0 + (1 — 0) In(1 — 6)]} (4.4)
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The explicit dependence of AF on 6 has been indicated to emphasize that unlike
in simple Langmuir adsorption, the adsorption energy here depends on surface
coverage.

We still need to define the size of the adsorption cell and hence the value of #
corresponding to a given surface density of proteins. Quite generally, we can set
0 = a.(R,/R)* where R, is the radius of the protein sphere and R the radius of the
Wigner-Seitz cell defining the area (7R?) per protein on the membrane surface.
The parameter «. (a, > 1), expresses the extent to which the “actual” cell size
exceeds the projected area (WRE)) of the bare protein. For a given experimental
system it may be determined based on the saturation coverage of this system.
We shall simply use a,. = 1.

Using Eq. 4.4 the chemical potential of the adsorbed proteins, p; = (0F;/0N,)
J0(Fs/N)/00), is given by

OAF 0

Recalling that the adsorption energy, AF', is measured with respect to the
charging energy of the separated macroions, the energetic term in the chemical
potential of the free proteins in solution is zero. The configurational entropy
contribution to this chemical potential can be derived based on a 3D lattice
model description, analogous to the one used for the adsorbed layer, yielding
pr = kgTlInfc/(1 — ¢)] for the chemical potential of the proteins in the bulk
solution, with ¢ denoting their volume fraction in this phase. Because we ignore
inter-protein interactions in solution we shall only consider the dilute solution
limit, implying puy = kpT'lnc.

Comparing the chemical potentials of the protein in the adsorbed and free

states we obtain a Langmuir-like adsorption equation

K(0)c
0= ———~ 4.
[T K(0)c (4:6)
with the caveat that the binding constant depends on surface coverage,
AF + 0(0AF /00
K =expq — + 60AF/06) (4.7)
kgT

It should be mentioned that coverage dependent adsorption constants have
previously been presented to describe the effect of lateral interaction between
adsorbates. Such are the Davies (Davies, 1958) and Frumkin (Adamson, 1990)
isotherms, which are suitable for systems where adsorbates surface mixing entropy
is non-ideal. Note, that here the adsorbed proteins interact weakly inter-surface

distances larger than ~ [, but interact strongly when R— R, < [p. Furthermore,
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since the lipids are free to defuse in the membrane plane, thus optimizing the
interaction energy with the adsorbate, we use a the complete form of Af(#) in
our equation. We note, that Heimburg et al. (1999) have also considered coverage
dependent adsorption constants. Their expression for K () takes into account
excluded volume and other, non-electrostatic, interactions between the adsorbed

proteins, but not the direct electrostatic interactions.

4.3 Results and Discussion

The interaction between two planar and parallel surfaces, uniformly and oppo-
sitely charged with ezactly the same charge density, is attractive (see Sec. 1.6).
This is no longer the case when the charge densities of the two surfaces are not
equal. In such cases, a certain fraction of the counterions must remain within the
gap between the surfaces. Consequently, the interaction between the surfaces,
which can be attractive at large surface separations becomes repulsive at close
approach, owing to the increasing osmotic pressure of the remaining counterions.
This short range repulsion is stronger the larger the “charge mismatch” between
the surfaces (Parsegian & Gingell, 1972; Lau & Pincus, 1999).

As already demonstrated in Chaps. 2,3, qualitatively similar effects prevail,
though to a lesser extent, when one or both surfaces are curved. For example,
according to PB theory, when a charged sphere approaches an oppositely charged
planar surface (of different but fixed charge density) the interaction turns repul-
sive only at very small distances. When lipid demixing (surface charge redistri-
bution) is allowed, the interaction (according to PB theory) may be attractive at
all distances. This scenario may prevail in the adsorption of charged proteins on
mixed lipid membranes containing oppositely charged lipid molecules. In the ter-
minology of the previous section, it is possible that AF}, and AF (and even more
so, AF) will differ not only in magnitude but also in sign. The differences are ex-
pected to depend sensitively on the charge density ratio X, = —o0,/d, becoming
pronounced for large X. and small 6. Note, however, that our PB calculations
which do not take into account the finite size of the ions and water molecules, are
not applicable for distances shorter than Amm &~ 3 A, corresponding to the range
of strong hydration repulsion. In the following discussion we present calculations
of AF(h) and n(r) as a function of h/lp, extending to separations as small as
h/lp = 0.1. Clearly, our calculations are only relevant for A > hp;,.

We shall begin the discussion with a comparison of the adsorption character-
istics of an isolated protein (R > R, + [p) on “frozen” and fluid (“annealing”)
membrane. We shall then consider the effects of protein crowding on the binding

behavior and their reflection in adsorption isotherms. We shall then present a
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Figure 4.3: Adsorption free energies, AFy,, AF, and AFy, as a function of the protein-
membrane distance, h, for p = 10A, Ry = Ip, a = 65A°, ¢ = 0.5, X, = 1.0 and ¥ = 0.
The inset shows at h/lp = 0.3 the local composition profile, 5(r), for membranes with
constant surface potential (upper curve), a mixed fluid membrane (middle curve), and

a frozen lipid distribution (lower, horizontal, curve).

simple, analytical, model for the adsorption of an isolated protein. We will con-
clude with a brief discussion of protein adsorption on non-ideally mixed (x # 0)
membranes.

In all the calculations presented below we shall use the same set of values for:
the cross-sectional area per lipid, a = 65 AZ; the Debye length, I, = 10 A; and
the radius of the protein sphere, R, = [p = 10 A. Numerical solutions of the PB
equation are derived using the methods described in App. B.

4.3.1 Adsorption of a single protein

Equal surface charge densities

Our first set of calculations is presented for a lipid membrane where half of the
lipids are acidic and the rest are neutral, i.e., ¢ = 0.5, corresponding to one
negative charge per 130 A® of membrane surface. The protein charge density
matches exactly the membrane charge density, i.e., X. = 1.0, corresponding to a
protein carrying about 10 positive charges, uniformly smeared on its surface.

Fig. 4.3 shows the adsorption free energies AF,, AF, and AFy as a function
of the membrane-protein distance, h.

Although, as expected, AF, < AF < AF,, the adsorption free energies

corresponding to the three cases considered are hardly discernible. This appears
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reasonable in view of the fact that the average charge density of the membrane
matches the one on the protein surface. Nevertheless, as indicated by the charge
modulation profiles shown in the inset of Fig. 4.3, the extent of charged lipid
recruitment to the immediate vicinity of the protein is non-negligible. (Recall
that the calculations shown in Fig. 4.3 are only relevant for h > hnyin.)

A qualitative argument explaining why the substantial variations in local lipid
composition are not reflected to the same extent in the binding free energy curves
can be given as follows. As the protein approaches the membrane surface, the
charged lipids in its immediate vicinity are essentially neutralized, thus lowering
the electrostatic potential in the contact zone. When the lipids are mobile, they
tend to diffuse from the surroundings towards the interaction zone, attempting to
restore a uniform electrostatic potential throughout the membrane. The gain in
electrostatic energy by the stronger adsorption is largely offset by the entropy loss
associated with the concomitant transport of counterions into the confines of the
interaction region. Later in this section we present a simple model (based on lin-
ear PB theory and the constant potential boundary condition on the membrane)

that accounts for this mechanism.

Highly charged membrane, weakly charged protein

Our next representative case corresponds to a membrane where most lipids are
acidic, ¢ = 0.8, adsorbing a relatively weakly charged protein with ¢, = 0.3
(X, = 0.375). The adsorption free energies and charge modulation profiles for
the three types of adsorbing membranes are shown in Fig. 4.4.

As expected, because the protein is weakly charged, the magnitude of the
adsorption free energy is considerably smaller than in the previous case. However,
the distinction between the three different types of membranes is completely lost;
all three AF’s are essentially identical. Nevertheless, noticeable, though small,
differences appear again in the charge modulation profiles. Our calculation thus
suggests that the adsorption energy of weakly charged proteins on highly charged
membranes is not affected appreciably by the degree of lipid demixing. For small
values of h/lp charged lipids are depleted from the center of the interaction zone

but concentrate at its rim, resulting in a non-monotonic composition profile.

Highly charged proteins on weakly charged membranes

The case of greatest biological relevance is that of highly charged basic proteins
interacting with weakly charged acidic membranes. This is also the type of sys-
tems where the effects of lipid charge modulation effects are most pronounced.

The adsorption free energies, AFy,, AF, and AFy, for a system characterized
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Figure 4.4: Adsorption free energies as a function of the protein-membrane distance,
h,forlp =10A, R, =Ip, a = 65A%, ¢ = 0.8, X, = 0.375 ¥ = 0. All adsorption free
energies (AFy, AF, and AF}) are essentially equal. The inset shows at h/lp = 0.3 the
local composition profile, n(r), for membranes with constant surface potential (upper
curve), a mixed fluid membrane (middle curve), and a frozen lipid distribution (lower,
horizontal, curve).

by ¢ = 0.2 and X, = 3.5 (¢, = 0.7), are presented in Fig. 4.5. The inset
shows the lipid composition profiles corresponding to the three types of adsorbing

membranes for n(r) at h/lp = 0.3.
In this case the effects of lipid mobility are apparent in both the adsorption free

energy and the composition profile. The magnitude of the binding free energy on
a membrane of uniform, frozen, lipid composition (n = ¢) is considerably smaller
than that on a fluid membrane. We also note that AFj shows a minimum at
some very small (albeit unrealistic) value of h/lp, reflecting the osmotic pressure
due to counterion confinement in the contact region. This minimum disappears
when lipid demixing is allowed to take place, as charged lipids move towards the
interaction zone so as to achieve charge matching, concomitantly releasing the
confined counterions into the bulk solution. The tendency for charge matching is
clearly visible in the inset of Fig. 4.5. The demixing entropy penalty associated
with this process is reflected in the difference (of order 1 kgT') between AF and
AFy. In this case, in contrast to the two previous cases considered, the diffusion
of charged lipids into the interaction zone is accompanied by counterion release

and concomitant gain in binding free energy.

Increasing the charge mismatch between the protein and the membrane sur-
face lowers the adsorption energy and may result in the appearance of a minimum

in the energy-distance curve at relatively large separations. This behavior is il-
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Figure 4.5: Adsorption free energies, AFy,, AF, and AFj, as a function of the protein-
membrane distance, h, for [p = 104, R, =Ilp,a= 65A2, $» =02, X, =3.5(¢p =0.7),
X = 0. The inset shows at h/lp = 0.3 the local composition profile, 7(r), for membranes
with constant surface potential (upper curve), a mixed fluid membrane (middle curve),
and a frozen lipid distribution (lower, horizontal, curve).

lustrated in Fig. 4.6 for a protein with a relatively small surface charge (¢, = 0.2,
corresponding to four elementary charges on the surface of our protein sphere)
and membranes containing a small fraction of acidic lipid. The figure shows AF
and AF, for membranes of composition ¢ = 0.05 and ¢ = 0.01.

For ¢ = 0.05 we find the same qualitative behavior as that found for larger sur-
face charge densities (Fig. 4.5). The magnitude of the binding energy is smaller,
because the charge densities are smaller. For the membrane containing only one
percent of charged lipids the interaction is weak and attractive at large distances,
turning repulsive at h ~ [p. In this case, because of the very low “background”
concentration of acidic lipids, importing these lipids into the interaction zone
implies a severe demixing entropy penalty, which the system is reluctant to pay.
Consequently, the binding energy remains small in both the fluid and frozen

membranes.

4.3.2 Protein lateral interactions and adsorption isotherms

Two important effects come into play when charged proteins begin to crowd on
the surface of a (relatively weakly) charged mixed membrane. First, they compete
in recruiting charged lipids into their immediate vicinity. (In the opposite case,
i.e., when the membrane charge density is larger than that of the protein, the ad-

sorbed proteins compete in recruiting neutral lipids.) Second, lateral inter-protein
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Figure 4.6: The protein adsorption energy AF as a function of the protein-membrane
distance h for ¢, = 0.2. Curves (a) and (b) correspond to ¢ = 0.05. Curves (c) and
(d) correspond to ¢ = 0.01. For curves (a) and (c), the lipids are mobile whereas for
curves (b) and (d) the local membrane composition n = ¢ is fixed.

repulsion becomes significant, resulting in smaller adsorption free energies. The
magnitude of these effects depends sensitively on the protein-membrane charge
ratio and, of course, the degree of surface coverage § = (R,/R)?.

In Fig. 4.7 we show how the lipid composition profile in the vicinity of an
adsorbed protein, 7(r), depends on the average distance between the adsorbed
proteins. (Recall that 2R is the distance between adjacent protein centers;
the smallest distance between their charged surfaces is 2(R — R,).) Calculated
composition profiles are shown for basic proteins of two different surface charge
densities, ¢, = 0.7 and ¢, = 0.2, interacting with a mixed membrane containing
¢ = 0.2 acidic lipids. When ¢, = ¢ = 0.2 (“charge matching”) the extent of
charge modulation, n(r) — ¢, is small, and mainly apparent at large inter-protein
separations.

Pronounced lipid composition modulations are expected, and observed, for
large R, especially when the surface charge density of the protein is significantly
larger than that of the membrane, as seen for ¢, = 0.7,¢ = 0.2 and for R = 60 A
in Fig. 4.7. In this case charged lipids accumulate in the immediate vicinity of
the protein, thereby reducing the charged lipid concentration at larger distances,
r ~ R. The accumulation of charged lipids near the protein is somewhat smaller
when R = 31 A, yet their depletion from the “central region”, r ~ R, becomes
more pronounced. The charge modulations are rather weak when the proteins
are densely packed (R = 13 A in Fig. 4.7). In this limit the driving force for
lipid polarization is diminished because the charged lipids in between neighboring

proteins favorably interact with both of them.
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Figure 4.7: The local membrane composition, 7(r), for ¢, = 0.7, ¢ = 0.2, x = 0 and
R=60A (a), R=31A (b),and R =13 A (c). Curves (d), (e), and (f) correspond to
¢p = ¢ = 0.2, for the same values of R as above. In all cases h = heq = 3 A.

Finally, in Fig. 4.8 we compile a series of calculations demonstrating the
effects of lipid mobility and protein-protein interactions on the adsorption free
energy, and how they are reflected in the adsorption isotherms, as calculated
using Eqs. 4.6 and 4.7. The two lower diagrams show the binding free energy, as
a function of the distance between adsorbed protein, 2R, for highly (¢, = 0.7,
left) and moderately (¢, = 0.2, right) charged proteins on mixed membranes with
varying proportions of charged lipids; in the range ¢ = 0.05 — 0.7. Four curves
are shown for every ¢,, ¢ combination. One of these curves corresponds to the
“real” case, where the lipids are allowed to demix (paying the necessary price of
demixing entropy) and the adsorbed proteins interact with each other. The other
three curves, shown only for comparison, were calculated with either one, or both,
of these effects artificially turned off. The adsorption isotherms corresponding to
the various cases are shown in the two upper diagrams.

A general conclusion from these calculations concerns the rather dramatic role
of inter-protein interactions. Whether lipid demixing is allowed or arrested, for all
sets of ¢, ¢, we find that the magnitude of the adsorption free energy is steeply
decreasing once the separation between adjacent protein surfaces, 2(R— R,,), falls
below ~ 2[p; that is when the counterion clouds surrounding the proteins begin
to overlap. For our choice of molecular parameters this happens at R ~ 20 A.
At larger distances inter-protein interactions are negligible. This conclusion is in
line with the calculation of Murray at al., (1999) for pentalysine adsorption on

mixed (frozen) membranes.
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Figure 4.8: Adsorption isotherms 6(c) (top panel) and adsorption free energies AF(R)
(bottom panel) for several combinations of protein and membrane charge densities.
The two figures on the left correspond to the adsorption of highly charged proteins
(¢pp = 0.7) on membranes with a smaller charge density, ¢ = 0.2 (curves marked (a)),
and an equal charge density, ¢ = 0.7 (curves marked (b)). The figures on the right
are for ¢, = 0.2; the curves marked (c), (d) and (e) correspond to ¢ = 0.05,0.2 and
0.5, respectively. In addition to the solid curves, which represent the results obtained
from the full calculation, including the effects of lipid mobility (mixing) and protein-
protein interactions, we also show, for comparison, three other curves, corresponding to
free energies and adsorption isotherms calculated for: immobile lipids but with inter-
protein electrostatic interactions (dashed curves); mobile lipids but without protein-
protein interactions (dashed-dotted curves); immobile lipids and no protein-protein
interactions (dotted curves). All calculations are for heq = 3 A and x = 0.
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As expected, with these interactions taken into account, the adsorption isotherms
begin to saturate at much smaller values of the protein concentration in the bulk
solution (c), reaching a much smaller saturation value, 6,,,,; considerably smaller
than 1. These findings suggest that the simple Langmuir adsorption scheme may
provide a reasonable approximate description of the adsorption equilibrium, pro-
vided the linear dimension of an adsorption site is taken as ~ R, + [p.

Whereas the effects of inter-protein interactions become increasingly pro-
nounced at higher surface coverage, the role of lipid mobility is mainly apparent
when these interactions subside. As shown in Fig. 4.8, local demixing of the lipids
in the vicinity of the adsorbed proteins can result in significant enhancement of
the adsorption free energy; especially when the protein charge density is consid-
erably higher than the average charge density of the membrane. The difference
in free energy can be a substantial fraction of the total free energy. The adsorp-
tion isotherms corresponding to mobile vs. frozen lipid distributions show even

greater differences because their dependence on AF' is exponential.

4.3.3 Surface overcharging

The charges on the apposed faces of the membrane and the protein provide par-
tial, possibly complete, charge neutralization, depending on the degree of surface
coverage . In contrast, the “outer” surfaces of the proteins, those facing the
aqueous solvent, hardly interact with the charged lipid surface and are not “com-
pensated” by other “fixed” (macroion) charges. The apparent surface charge
density corresponding to an adsorbing membrane, partially covered by proteins,
is given by

Onet =0 +0pAp/A =0(1—4X.0) (4.8)

where, as before, X. = —op/d is the protein-membrane charge density ratio.
The second equality corresponds to the special case of spherical proteins, where
A,JA = 47('R§/7TR2 = 40.

From the adsorption isotherms shown in Fig. 4.8 it follows that for all cases
and conditions considered, at saturation one; > 0, i.e., the total protein charge
overcompensates the negative charge of the lipid membrane. As a specific example
consider the case ¢, = 0.7,¢ = 0.2, (X, = 3.5) (with mobile lipids). The satu-
ration coverage corresponding to this case is fg,¢ ~ 0.16, implying o, &= —1.20.
That is, the effective charge of the membrane, after adsorption, is approximately
reversed. As qualitatively argued above, this is a consequence of the fact that
only about half of the protein charges (those on the hemisphere facing the mem-
brane) are compensated. In general, we expect one /7, to be a function of the

geometry of the adsorbing particles and the charge distribution on their surface.
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It should be mentioned that the phenomenon of charge overcompensation
and reversal is commonplace in the adsorption of colloidal particles and poly-
electrolytes on oppositely charged surfaces (Chatellier & Joanny, 1996; Joanny,
1999; Borukhov et al., 1998; Park et al., 1999). In fact, surface charge overcom-
pensation (sign reversal of the apparent surface charge) has also been observed
experimentally (Kékicheff et al., 1993) and predicted theoretically for ordinary,
especially multivalent, electrolyte solutions, (for a comprehensive discussion of
these effects see Gerberg and Kjellander (1998) and references therein) . In these
systems surface charge reversal is the consequence of ion-ion correlations in the
bulk solution and the vicinity of the charged surfaces. Of course these correla-
tions are not accounted for by the mean field PB theory. Nevertheless, the fact
that we predict surface charge over compensation in our protein-membrane sys-
tem is hardly surprising, even though our treatment of the electrolyte solution is
based on PB theory. This is because in our problem the analog of the multivalent
counterions in electrolyte solutions are not the small monovalent salt ions (that
we treat in a mean field fashions) but, rather, the charged colloidal (protein) par-
ticles. Spatial correlations between these macro-counterions, as well as excluded
volume constraints between the protein counterions and the membrane surface,

are explicitly accounted for by the use of the cell model.

4.3.4 A simple model for protein-induced
membrane charge polarization

Earlier in this section we have shown that the ability of a mixed fluid membrane
to adjust its local charge to that of an approaching protein results in significant
enhancement of the adsorption free energy. Moreover, this charge polarization
tendency was found to be stronger than the entropic resistance to lipid demixing.
This is reflected by the fact that AF is not very different from AFj;,, as compared
to AFy, see e.g., Fig. 4.5. Replacing AF by AFy, i.e., omitting the (positive)
demixing entropy contribution to the adsorption free energy, we can treat the
membrane as a surface of constant electrostatic potential, 1) = 1y. Based on this
approximation a simple, closed form, model for the adsorption of a single protein
on the membrane surface, can be presented, as follows.

Suppose first that a charged and flat, say disklike, protein is approaching
the membrane. The charge density on the surface of the protein, o, = —X,0,
is generally different from the average charge density on the membrane surface,
7 = —¢e/a. Thus, the lipid composition in the contact region, n = —ao/e, is
no longer equal to the composition in the rest of the membrane (which can be
treated as infinitely large). If the area of the protein, A.g, is large compared

to the cross sectional area per lipid headgroup we can neglect edge effects and
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assume that 7 is uniform within the contact area; n depends, of course, on the
disk-surface distance h, (n(h — c0) = ¢).

Within the framework of linearized PB theory (valid for ¢) < 1) an expression
for the interaction free energy between two, arbitrarily charged, planar surfaces
was derived by Parsegian and Gingell (1972). Based on this expression the elec-
trostatic free energy of our disk-membrane system is given by

F  Awpo| (0 + X2¢%) cosh(h/lp) — 2nXep

kT a sinh(h/lp) 2¢(n=9) (4:9)

where py = 27lglp/a. To obtain the result in Eq. 4.9, we have used the expression
for the reduced potential of an unperturbed membrane vy = —2¢pq as is known
from linear PB theory. The second term in this expression is the change in the
electrostatic free energy in the reservoir associated with the transfer of lipids
into the interaction zone. The membrane composition in the interaction zone is

unknown. We find it by minimizing F' with respect to 7, resulting in

_ X¢ +sinh(h/Ip)
B cosh(h/lp)

(4.10)

The dependence of n on the protein-surface separation, as predicted by Eq.
4.10, is shown in Fig. 4.9 for three different values of X.. For h > [p we in-
deed find n = ¢. Interestingly, for all X, a maximum in 7/¢ appears at some
intermediate separation. In the limit h — 0, the charge density on the mem-
brane surface becomes equal to that on the protein surface. That is, at small
separations the adsorption free energy is minimal (maximal in magnitude) when
the protein-membrane “complex” is isoelecric, at which point all the counterions
(which otherwise would be confined between the surfaces) are released into the
bulk solution.

The electrostatic interaction model outlined above can be extended to the case
of a non-planar, e.g., spherical, protein, using a Derjaguin-like approximation
(Evans & Wennerstrom, 1994). In this approximation, the interaction between
two curved (or curved and planar) surfaces is expressed as a sum of interac-
tions between planar and parallel area elements belonging to the two surfaces,
appropriately weighted according to the curvatures of the interacting surfaces.
The interaction energy between area elements is derived from the correspond-
ing expression for infinite surfaces. The Derjaguin approximation is appropriate
for moderately curved surfaces. For our problem, of a charged spherical protein
interacting with a planar membrane, this requires R, > h and R, > [p.

In brief, to apply the Derjaguin approximation to the sphere-membrane prob-
lem we divide the sphere surface into circular-stripe elements, cylindrically sur-

rounding the symmetry axis. With each such element we associate a circular shell
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Figure 4.9: The membrane charge density in the interaction region of a “flat protein”,
as a function of the distance between the membrane surface and the protein. The figure
shows /¢ = (X, +sinh h/lp)/ cosh h/lp as given by Eq. 4.10, for three representative
values of the charge density ratio X..

of equal area on the membrane surface. The distance between the area element on
the membrane (at distance r from the axis) and the corresponding area element
on the sphere is I(r) = \/(r — r,)? + h(ry)?, with h(r,) = d+R,— /R — r2 and
r, = R, sinw where w = 2arcsin(r/2R,,) is the angle between the membrane nor-

mal and the radius vector connecting the protein center with the area element on
the protein surface. (The interaction range on the membrane, as measured by r,
exceeds the projected radius of the protein, [2,. We let the angle w vary over the
protein hemisphere facing the membrane, i.e., w varies between 0 and 7/2, im-
plying that on the membrane the interaction zone is bounded by 7,4 = ﬂRp.)
Then, using Eq. 4.10, we calculate n(I(r)) = n(r), the lipid composition at dis-
tance [(r) from the sphere or, equivalently, at distance r from the symmetry axis,
in the membrane plane.  The results of these calculations are shown in Fig. 4.10
for three values of the protein-membrane charge ratio, namely, X, = 0.5, X, =1,
and X, = 2. To ensure the validity of the Derjaguin approximation we have used
here a large protein radius R, = 30 A. The other parameters in this series of
calculations are Ip = 10 A, ¢ = 0.1 and h/lp = 0.2. Also shown in the figure
are the numerical solutions for 7(r) according to the nonlinear PB theory. The
simple model in Eq. 4.10 is in good qualitative agreement with PB theory. It
predicts correctly the accumulation of charged lipids near the adsorbed protein
and the tendency toward charge matching at the binding site of the sphere.
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Figure 4.10: The lipid distribution n(r) according to nonlinear PB theory (solid curves)
and the Derjaguin-like approximation (dashed curves), for I = 10 A ¢ =01, R, =
30 A and h/lp = 0.2. Curves (a), (b) and (c) correspond to X, = 2,1 and 0.5,
respectively.

4.3.5 Non-ideal Mixing

Let us now examine the effect of a non-ideal contribution to the free energy
(i.e., a non-zero x value) on the migration of lipids in the vicinity of the charged
protein. Fig. 4.11 shows the charge density modulation for y = 0 and y = 1, for
a protein of ¢, = 0.7 and membrane with ¢ = 0.2, for several cell sizes, R. The
effect of the non-ideal mixing is apparent: the higher the value of y, the stronger
the compositional modulations of the lipids. In fact, such a non-ideal mixing
term may result in charge density modulations yet stronger than in the case
of a similar surface without a non-ideal mixing contribution but with constant
potential boundary condition.

It is well known (Hill, 1960) that a sufficiently large non-ideal mixing parame-
ter will eventually render any system unstable with respect to macroscopic phase
separation. The smallest value of Y at which this occurs is called the critical
point x.. Similarly for a membrane with adsorbed proteins on it, we expect the
formation of lateral domains within the membrane for xy > y.. That is, instead
of varying the composition only locally, the lipids may rearrange macroscopically
to take advantage of the favorable non-ideal mixing contribution. This results
in macroscopic membrane domains that do not only differ in their lipid compo-
sition but also in the density of adsorbed proteins.  An interesting question is
whether a protein-free membrane can be stable while the same membrane with
adsorbed proteins on it would phase separate. In other words, can the adsorption
of proteins onto membranes induce phase separation?

A simple qualitative illustration of this idea can be provided by the follow-
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Figure 4.11: The local membrane composition, n(r), for ¢, = 0.7, ¢ = 0.2 for x =0
(dashed) and ¥ = 1kgT (solid), for the cases where R = 60 A (a) , R = 31 A (b), and
R=13A (c).

ing model. Start with an uncharged, two-component, protein-free lipid bilayer.
Within a “Bragg-Williams”, mean-field approximation the free energy per lipid

molecule in the membrane is f = f,,, with

fom = kT [¢In¢ + (1 = ¢)In(1 — ¢) + X(1 — )], (4.11)

where the first two terms correspond to the ideal “mixing” of the lipids within the
membrane, and the last term represents the non-ideal mixing contribution. As is
well known, Eq. 4.11 gives rise to a critical point x. = 2 at ¢ = ¢. = 0.5 (Hill,
1960).

Consider now a two-component, protein-free lipid bilayer that has one of its
components carrying an electrical charge. We account for the corresponding
electrostatic free energy by adding to the molecular free energy f = f,m + fer the
term (Lekkerkerker, 1989)

feo=2kpT ¢ +In(p + q) (4.12)

(1—q)
p
where p = poo, with py = 27lglp/a and g = \/ﬁ Eq. 4.12 is the charging free
energy of a homogeneously charged membrane of composition ¢ within Poisson-
Boltzmann theory. Again, above a certain value Y > X. appears a (chemical)
instability in the membrane with respect to demixing (at the same ¢.) (Hill,
1960; Reichel, 1998). The value of the critical point depends on py For py < 1
it is ¥, = 2 + po, increasing to Y, = 2 + /3 for py > 1. In Fig. 4.12 (curve a),
the behavior of Y. is plotted as a function of py. The new critical value, Y., is
always higher than that for an uncharged membrane. The reason for this is the
additional repulsion between the head group charges, which renders the mixing

process more favorable.
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The presence of adsorbed proteins can regain the instability. By neutralizing
some (or most) of the lipids in the membrane the additional electrostatic free
energy contribution is diminished. The combined protein-membrane system is
then expected to display a lower critical demixing parameter Y., intermediate
between that of a neutral and protein-free, charged membrane. Turning to our
illustrative model we adsorb onto the charged membrane proteins of charge z,
and cross-sectional area a, with coverage #. This will modify the molecular free
energy per lipid f = fum + fer+ fim- First, the charging energy f.; will be lowered
due to the neutralizing effect of the adsorbed proteins. Second, f contains the
additional contribution f;,, = kT (a/a,) [#Inf + (1 — 0) In(1 — §)], accounting
for the mixing entropy of the protein layer. While in Fig. 4.11 f,; was calcu-
lated based on a microscopic model, it is sufficient for our present purpose to
consider a highly simplified description of f,;. To this end, we shall assume that
each adsorbed protein lowers the charge on the membrane by an amount of z,,
without inducing charge density modulations within the membrane. That is, the
membrane is treated to remain homogeneously charged, but with an effective
composition ¢°T = ¢ — z,0a/a,. Consequently, the charging energy per lipid is
now given by Eq. 4.12 where ¢ is replaced by ¢°. Clearly then, for a,¢ = az,0 all
charged lipids would be neutralized by corresponding protein charges, rendering
the membrane uncharged (implying f.; = 0 and thus . = 2). This however is not
what the model predicts. Rather, the demixing contribution of the adsorbed pro-
tein layer (f;,) provides an additional contribution opposing macroscopic phase
separation which gives rise to an increase of the critical point with respect to
that of a neutral membrane. In fact, the critical y. for a membrane with an
adsorbed protein layer is given by the minimum of the expression (maximum of

the spinodal)
1 Do

+ _ _ 4.13
20(1 = 0) g+ 2pof(1 - 0)z2a/a, (419)

with respect to ¢ and § where ¢ is given by the expression
q= \/1 + pE(p — zp0a/a,)? (4.14)

In the derivation of Eq. 4.13 all relevant degrees of freedom must be included
(Hill, 1960; Reichel, 1998). That is, the membrane is able to adjust not only
its composition but also the amount of adsorbed proteins in each of its sub-
phases. The only two conserved quantities are the average composition, ¢, of the
membrane and the bulk concentration of the proteins in solution which determines
the average coverage, 0, of the protein layer. Fig. 4.12 displays Y. according
to Eq. 4.13 as a function of py = 27lglp/a for several choices of z,, a,, and

a. We see that, indeed, Y. is intermediate between that of a protein-free
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Figure 4.12: The critical point x. of a mixed membrane with an adsorbed protein
layer as a function of pg = 2miplp/a for no adsorbed proteins (a), ap = a and z, =1
(b), ap = 2a and z, =2 (c), and a, = 5a and 2, =5 (d).

and fully neutralized membrane. Fig. 4.12 also suggests that large and highly
charged proteins are more efficient in reducing the critical point. At this point
we emphasize again the approximative nature of the model. It does not take
into account any structural details of the adsorbed proteins, nor does it allow
for modulations of the membrane compositions within each phase. Moreover, it
neglects the electrostatic repulsion between adsorbed proteins. Thus, it cannot
replace detailed numerical calculations. However, it points at a mechanism by

which lipid membranes may mediate the accumulation of proteins into domains.

4.4 Concluding Remarks

4.4.1 Other theoretical models

We conclude this chapter with a short account of other theoretical models that
have been previously studied. The electrostatic binding of various peptides on
lipid membranes was calculated and compared to experiment by Ben-Tal at al.,
(Ben-Tal et al., 1996; Ben-Tal et al., 1997; Murray et al., 1999), based on solutions
of the nonlinear PB equation for atomic models of the lipid bilayer and the
peptides. Assuming a “frozen” lipid distribution in the mixed membrane these
authors calculated peptide binding constants as a function of salt concentration,
finding good agreement with experiment. Employing linear PB theory, Roth at al.
(1998) have modeled protein-surface binding as the adsorption of a charged sphere

on a uniformly charged planar surface. Analyzing the enthalpic and entropic
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contributions to the adsorption free energy as a function of the protein-surface
charge density ratio, they conclude that the entropic component associated with
the release of mobile counterions provides the major contribution to the binding
free energy. This conclusion is in line with the common notion that counterion
release is the main driving force for electrostatic attraction between oppositely

charged macromolecules (see e.g., (Record et al., 1978; Wagner et al., 2000)).

At least two theoretical models have recognized and emphasized the impor-
tant role of lipid mobility and demixing in determining the protein binding free
energy and adsorption isotherms. One of these models, by Densiov at al. (1998),
has further suggested that protein-induced lipid demixing is the mechanism un-
derlying the formation of lipid-protein domains in membranes. The domains are
membrane regions (phases) characterized by a large lateral density of adsorbed
proteins and “adsorbing” lipids, coexisting with other regions (“nondomains”)
of lower protein density. Based on Gouy-Chapman theory, these authors have
calculated the adsorption free energy of pentalysine on the surface of a mixed
membrane, composed of acidic and neutral lipids, and found it to increase with
the mole fraction of acidic lipid in the membrane. Their calculations show that the
gain in electrostatic free energy associated with the adsorption of proteins on the
phase separated membrane overrides the concomitant loss in lipid mixing entropy,
suggesting that domain formation is thermodynamically favorable. It should be
noted, however, that this calculation does not account for two important (and
coupled) effects. First, assuming uniformly smeared surface charge distributions
(in both the domain and nondomain regions), the model can not account for
local lipid demixing; i.e., for the accumulation of acidic lipids in the immediate
vicinity of an adsorbed basic peptide. Second, the model assumes that the basic
peptides neutralize a certain fraction of the acidic lipid charges, thus reducing
the net surface charge density. The structural characteristics of the adsorbed
peptides and, consequently, the lateral electrostatic repulsion between them, are
not included in the model. This, direct interaction between peptides has been
studied by Murray at al. (1999), by calculating the adsorption energy of a peptide
onto a vacant membrane adsorption “site”, surrounded by pre-adsorbed peptides.
These authors find that the adsorption energy indeed decreases, though not to
the extent predicted by models assuming uniformly smeared (lipid and protein)
surface charges. However, this latter calculation does not allow for local demixing
of the lipids. Qualitatively, recalling that the membrane is a 2D fluid mixture,
one expects that the already adsorbed peptides will deplete the charged lipids
from the vacant regions, thereby reducing the adsorption energy of an additional

peptide and hence enhancing the effects of adsorbate-adsorbate repulsion.

Clearly, if lipid demixing can take place locally, i.e., in the vicinity of singly
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adsorbed peptides there is no thermodynamic incentive for adsorbate aggregation.
This conclusion is consistent with the general result that, at least according to PB
theory, the interaction between like-charged colloidal particles is always repulsive,
whether in the bulk or in the vicinity of a confining wall (Neu, 1999; Sader &
Chan, 1999b; Sader & Chan, 1999a). This, in turn, suggests that protein domain
formation is most likely driven by a non-electrostatic mechanism, e.g., a lipid-
mediated protein attraction resulting from elastic membrane deformations (and
hence line tension) around the protein-membrane interaction zone (Sperotto &
Mouritsen, 1993; Gil et al., 1998).

Another theoretical model allowing for lipid redistribution upon protein ad-
sorption on mixed lipid membranes has been presented by Heimburg at al., (He-
imburg et al., 1999; Heimburg & Marsh, 1995). Here too, the electrostatic ad-
sorption energy is calculated using Gouy-Chapman theory, assuming that every
adsorbed peptide neutralizes a certain number of charged lipids. The charged
and neutral lipids are allowed to exchange, as in chemical equilibrium, between
the “protein covered” and vacant regions. The equilibrium compositions in these
regions are determined by the interplay between adsorption energy and mixing
entropy. Then, using either van der Waals or scaled particle theory to account for
non-electrostatic lateral interactions between the adsorbed proteins the authors
derive adsorption isotherms for membranes of varying (average) lipid composi-
tions. With appropriate choice of interaction parameters the model shows good
agreement with experimental adsorption isotherms of cytochrome ¢ on mixed
dioleoyl phosphatidylglycerol/dioleoyl phosphatidylcholine membranes.

In both models outlined above the lipid composition in the protein adsorption
domains (whether local or global) is different from that of the protein deficient
regions. Both models do not allow for local variations in lipid composition, on a
molecular scale, within and around the protein-membrane interaction zone, nor
for the dependence of the composition profile on protein lateral density and hence

on protein-protein repulsion.

4.4.2 Conclusions

Based on a general free energy expression we have analyzed the role of lipid mo-
bility (hence demixing) and lateral adsorbate interactions, on the adsorption free
energy of globular charged proteins onto mixed lipid membranes. We found that
the binding energy is significantly enhanced by the ability of the charged lipids
to adjust their local concentration in the vicinity of the adsorbed protein. The
effects of this, lipid-mobility, degree of freedom are particularly pronounced when
the protein is highly charged and the membrane is weakly charged. In this case,
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the extent of local membrane charge modulation is substantial, especially at low
protein densities. Inter-protein repulsions within the adsorbed layer become im-
portant, as expected, when the counterion atmospheres of neighboring proteins
begin to overlap. Both the lipid demixing degree of freedom and the lateral inter-
actions between the proteins are reflected in the calculated adsorption isotherms.
Assuming that the lipid charge in the vicinity of the adsorbed protein matches
the (“membrane facing”) protein charge, and that the minimal distance between
protein is governed by their counterion screening clouds provides an approximate
scheme for calculating (Langmuir-like) adsorption isotherms.

At saturation the charges on the membrane and the protein regions facing
the membrane are nearly equal. The protein charges facing the aqueous solution
remain uncompensated, implying “charge reversal” of the adsorbing surface.

The addition of a non-ideal lipid mixing contribution to the free energy leads
to a stronger membrane charge density modulation. Together with an energy
term not considered here which depends on the gradient in charge density, this
non-ideality may be at the base of the experimentally observed formation of high

density protein domains in lipid membranes.
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Chapter 5

Postlude

The work presented in this dissertation has focused on the electrostatic inter-
action of rigid macromolecules with lipid membranes. The study of such forces
has always attracted interest — both experimental and theoretical. This is be-
cause it was realized early on, that electrostatic forces are fundamental and often
paramount in understanding the interactions leading to formation of macromolec-
ular assemblies of the kind so often encountered in nature.

The theoretical study of such interactions has experienced a new thrust in the
past decade, due, at least in part, to the advent of computers that can perform
high speed calculations. These have enabled the study of more complex systems
that ultimately result in equations that are numerically harder to solve. The
models suggested for the systems studied can now include a more complex and
intricate picture, involving more degrees of freedom, that are relevant to the full
description of the real physical system examined.

The outcome of such numerical calculations can then be compared with the
results obtained from more simple models that can be solved analytically (or at
least semi-analytically). Thus, we may be reassured that the underlying principles
and forces in action hold even in light of complexity. In addition, new insights are
also gained as to the effect of strongly coupled degrees of freedom to the systems’
behavior.

Chapters 2 and 3 discussed the interaction of lipid membranes and DNA
molecules. Chapter 2 has dealt with one specific ordered phase, the lamellar LY
phase, that may form when mixing lipids that tend to form planar membranes
and DNA in an aqueous solution. Our model included the electrostatic degrees of
freedom, taking into account the mixing (and demixing) of the mobile salt ions,
as well as the charged and uncharged lipids in the (mixed) membrane.

An important achievement was the construction and subsequent solution of

the appropriate free energy functional, leading to a modified Poisson-Boltzmann
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equation with special boundary conditions, taking into account the possibility of
charged lipids to demix in the presence of a charged macroion. The basic under-
lying mechanism for the association of charged macromolecules, i.e. counterion
release, was theoretically predicted and confirmed directly through experiment.
We also showed the importance of lipid demixing in the vicinity of oppositely

charged DNA, tending towards charge matching.

Using the same model, the experimentally observed phase behavior of the
system was also accounted for. A simple analytical model was presented, recon-

firming many of the important results of the more complex model.

In Chapter 3, membrane elasticity, another important degree of freedom, was
added to the electrostatic and mixing. Thus, yet more complex and rich phase
behavior could be accounted for. One example is the formation of the hexag-
onal HY phase upon softening of the lipid membrane involved in forming the
LS complex. Several phase diagrams were presented, pertaining to systems with
typical compositions and elastic properties. The principles governing the forma-
tion of different phases were elucidated. We also showed how all the relevant
degrees of freedom (electrostatic, mixing and elasticity) could all be combined
self-consistently in a free energy functional. This was demonstrated in the analy-
sis of the formation of the corrugate LS complexes, where elasticity often opposes

the electrostatic tendency for the membrane to bend around DNA molecules.

In Chapter 4, we turned to discuss systems where peripheral proteins, an-
other class of rigid macromolecules, interact with lipid membranes. The coverage
dependent adsorption free energy was determined, again including electrostatic
and mixing contributions to the free energy. The importance of these degrees of
freedom, as well as the electrostatic interaction between adsorbed proteins was
demonstrated through the adsorption isotherms. Some common principles to the
ones discussed in chapters 2 and 3 emerge here: the tendency towards charge
matching on the membrane and protein, and the consequent membrane polariza-
tion. We also showed how membrane charges are typically over compensated by
protein-charges. Finally, we argued that lipid-protein domains may be enhanced
by non-ideal lipid mixing contributions.

All models presented were discussed on the level of the mean-field (Poisson-
Boltzmann) theory. As presented in Chap. 1, it is also possible to harness alter-
native approaches, such as computer simulations (Lyubartsev & Nordenskiold,
1995; Grgnbech-Jensen et al., 1997). These may shed light on effects which can
not be described by mean-field, PB theory. For example, Bandyopadhyay et
al. (Bandyopadhyay et al., 1999) use simulations to study lamellar DNA-lipid
complexes. Their results generally agree with ours, in that they find corrugations

and charge density modulations in the membrane surface due to the interac-
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tion with the DNA. However, they also find other effects that are absent from
our model. In particular, they find that both the helper and charged lipids are
involved in neutralizing the anionic DNA phosphate groups. The electrostatic
interactions between the CL and HL headgroups of the two lipids allow the HL
headgroups to orient out of the bilayer plane, and thus interact with the DNA
molecule. Albeit, as has been demonstrated throughout this work, our results,
based on mean-field calculations, are consistent with most of the available exper-
imental data. This supports our belief, based on previous works (see Sec. 1.2.1),
that the most important degrees of freedom in these systems are indeed properly
taken into account, and that the influence of other contributions on the system’s
behavior, such as correlations between mobile charges, are of secondary impor-
tance here.

Since the work presented here was wholly devoted to the interaction of rigid
macromolecules with charged membranes, the realm of flexible polymers interact-
ing with membranes has been left out. This would be a natural extension of this
work. For example, ss-DNA is a highly flexible polymer, that would most proba-
bly behave quite differently when interacting with lipids. Recent work (Artzner
et al., 2000) has investigated the effect of adding other polyelectrolytes (dex-
tran sulphate) to a system of lipoplexes. Thus, and exchange between DNA and
polyelectrolyte in the lipid-polyelectrolyte mesophases was observed. This probes
another important aspect: the dissolution of lipoplexes in living cells as part of
the transfection process. An even more general emerging aspect is the interac-
tion of lipids with self-assembling amphiphiles, to form other mesophases such
as micellar aggregates, again reminiscent of the ones formed by the amphiphiles
themselves when they are in solution (Kwak, 1998; Goddard & Ananthapadaman-
abhan, 1993; Diamant & Andelman, 2000).

To conclude, a self-consistent scheme, accounting for the important lipid
demixing and elastic degrees of freedom has been presented. The free energy
functional presented throughout this work can be extended to include other rele-
vant effects and degrees of freedom, such as ionizable lipid headgroups (Ninham
& Parsegian, 1971) and the effect of line tension due to a gradient in the lipid
composition profile. It is my feeling that the strength of this self-consistent ap-

proach is evident in the studied systems presented here.
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Appendix A

Solving the Poisson—Boltzmann
Equation for two parallel

cylinders

A.1 Introduction

The electrostatic interaction between colloidal particles and macromolecules often
plays a crucial role in the stability of these systems (Israelachvili, 1992). Albeit,
while the cases of two charged interacting planes and spheres has been extensively
studied, (Israelachvili, 1992; Langmuir, 1938; Carnie et al., 1994; Stankovich &
Carnie, 1996; Palkar & Lenhoff, 1994; Warszynsky & Adamczyk, 1997; Ledbetter
et al., 1981; Hoskin, 1955; Hoskin & Levine, 1955) the case of two rods has gained
less attention. Thus, our goal in this appendix is to present a numerical method
for calculating the electrostatic interaction between either two (infinitely long)
parallel charged rods, or between a rod and a charged planar surface, in a solution
containing added salt.!

Evaluating the electrostatic force between these model particles, even within
the framework of PB theory, is a formidable task. As discussed in Chaps 1-
-3, to a good approximation, the interaction between two double-stranded DNA
molecules can be modeled as that between infinite cylinders, since DNA is a rigid
polyelectrolytes, with a typical persistence length of 50nm, much larger than the
(axial) separation between neighboring charges (~0.17nm). In a similar fashion,
lipid bilayers may be modeled as infinite planes or slightly curved surfaces.

Several studies of the interaction between charged rod-like particles have been

!The results presented in this appendix were reported in Harries (1998)
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presented in the past (Ohnishi et al., 1960; Brenner & McQuarry, 1972; Brenner
& Parsegian, 1974; Grenbech-Jensen et al., 1997; Ray & Manning, 1994). Some
of these rely on the use of the linearized version of the PB equation (in the case
that the cylinders are immersed in a salt solution) (Brenner & Parsegian, 1974;
Brenner & McQuarry, 1972). This is an appropriate approximation in cases
of low surface charge densities. However, when dealing with particles of high
surface charge density, and a radius comparable to the Debye length (e.g. DNA
molecules), this approximation is no longer valid. In the limit where the inter-
particle distance is much smaller than their radii, the Derjaguin approximation
may be employed (Israelachvili, 1992). However, no single approximation is

expected to hold true for the whole range of inter-particle separations.

Another, alternative approach to studying the interaction between charged
rods is provided by the “counterion condensation” theory (CC) (Ray & Manning,
1994). Using this theory, an attractive force was found between two interacting
line charges (though the force was not evaluated continuously for the whole range
of inter-particle distances). This is in contrast to the expected result from PB
theory, where two equally charged rods should always repel (see sec. III). We note
however, that it is was suggested that CC theory is not a preferable approximation
to PB theory (Stigter, 1975).

In the case that no salt is added, an exact analytical solution exists for the
force between two rods using PB theory (Ohnishi et al., 1960). In a recent
study, the force between two charged rods with no added salt was evaluated
using Brownian-Dynamics simulations (Grgnbech-Jensen et al., 1997). Inter-rod
attraction was found in the case corresponding to DNA in a solution of divalent-

counterions.

In the past few years, several numerical procedures have been devised for
calculating the double layer forces and free energies between spherical parti-
cles (Carnie et al., 1994; Stankovich & Carnie, 1996; Palkar & Lenhoff, 1994;
Warszynsky & Adamczyk, 1997; Ledbetter et al., 1981). Usually these studies
involve using bispherical coordinates to transform the problem into one solvable
in a closed domain, and with convenient boundary conditions. Prominent among
these methods is the procedure first introduced by Carnie et al (see e.g., (Carnie
et al., 1994; Stankovich & Carnie, 1996); details of the general numerical scheme
used to solve the PB equation can be found in (Houstis et al., 1985)), which was
later extended to the treatment of two spheres of arbitrary radii. In the limiting
case where one radius is infinite, this corresponds to the interaction of a sphere
and a plane. This numerical algorithm which uses a spline collocation scheme to
solve the full PB equation, will be extended in the present study to the treatment

of cylindrical particles. The method presented here is most general, and can be
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Figure A.1: a) A system of two interacting charged parallel rods. b) Traces of constant
1 and @ curves in the bicylinder coordinate system. The shaded areas correspond to
the volume interior to the two interacting cylinders in the model system.

used to treat, for example, the interaction of various types of colloidal particles.
However, the numerical examples presented below, are mainly relevant to sys-
tems containing DNA and lipid bilayers. In particular, it will be shown that the
interaction between equally charged rods is always repulsive, whereas when the
rods are not equally charged, an attraction may appear. Results for the case of
an interacting cylinder with a wall are also presented. We find that the surface
charge density modulation on the plane of constant potential, may show either
an accumulation or depletion of counter charges near the cylinder (depending on

the ratio between the suface charge densities on the plane and cylinder).

A.2 Method of solution

The model consists of two infinitely long cylinders of radii a; and ay, immersed
in a solution of 1:1 electrolyte, of bulk concentration ny. The two cylinders are
separated by a surface to surface distance h (see Fig. A.1a). In all cases consid-
ered, it is assumed that inside the particles the dielectric constant is zero. This is
a common approximation when dealing with low dielectric particles, eliminating
the need to solve for the potential within them.

All lengths in the system will henceforth be expressed in terms of the Debye
length, k=' = (eoe,kpT/2n0e?)'/?, where ¢, is the dielectric constant of the solu-
tion, €, the permittivity of vacuum, e the electronic charge, kp is Boltzmann’s
constant, and 7" the absolute temperature. The PB equation for the scaled elec-

trostatic potential ¢ = e¢/kpT, everywhere outside the cylinders is:

V%) = sinh ¢ (A1)

In a similar manner, reduced units will be used to scale the surface charge
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density (0* = olp/ek), force per unit length (f* = flp/kpTk), and free energy
per unit length (F* = Flg/kgT), where I = €*/eye, kpT is the Bjerrum length.

The boundary conditions for this system can be conveniently expressed in
terms of bicylinder coordinates (7,6, z) (Moon & Spencer, 1961). The traces of
the coordinate surface on the xy plane are shown in Fig A.1b. The coordinate
surfaces are obtained by translating these curves along the z axis. Coordinate
surfaces of constant n form nested, non-concentric cylinders whose centers lie on
the z axis. The n = 0 (z = 0) surface corresponds to the infinite mid-plane with

an infinite radius. The bicylinder coordinates relate to the rectangular ones by:

B bsin
vo= coshn — cosf
bsinhn
T T Cosh 1N — cosf
z = z (A.2)

Thus in bicylinder coordinates, the region outside the two cylinders corre-
sponds to a rectangular domain with 0 < # < 27 and 7, < n < 1, where 7; and
1o correspond to the surface of the two cylinders; 7;, 7 and b are related to xaq,
kas and kh through:

b
: = Rka
sin
b
—— = KRay
sin 7y
b b
= kai + Kaz + kh (A.3)

tanh ~ tanh M2

The use of this coordinate system is similar to the use of bispherical coordi-
nates to study the two-sphere interaction problem (Carnie et al., 1994; Stankovich
& Carnie, 1996; Palkar & Lenhoff, 1994; Warszynsky & Adamczyk, 1997; Led-
better et al., 1981; Hoskin, 1955; Hoskin & Levine, 1955). The difference can
be expressed in terms of the scale factors: two in one set have the same form as
the corresponding two in the other set, while the third differs (Moon & Spencer,
1961).

Noting the z-invariance of the potential, the PB equation (A.1) assumes the

form:

(coshn —cos0)? (0% 0% ,
72 o + 507 ) = sinh ¢ (A.4)
Following Carnie et al. (Carnie et al., 1994; Stankovich & Carnie, 1996), we

solve this equation using Newton-Raphson (NR) iteration and collocation with
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bicubic Hermite basis functions. All calculations of the potential were performed
using a 29 x 29 grid. The maximum absolute difference between the final values
of the potential in succeeding iterations in the NR scheme was less than 5 x 107%.

The boundary condition corresponding to interaction under constant surface
potential is ¢ = 1)y on the surface of the cylinder. For interaction under constant
charge density, the boundary condition will be: —V1-ii = ¢*, on the surface of the
cylinder (of constant n), where 1 is the unit normal directed towards the particle.
In cases where the surface charge density is not constant, the local charge density
can be evaluated using this relation. Two additional boundary conditions arise
from the symmetry of the system, and correspond to: 9v/00 = 0, on surfaces of
6 =0 and 0 = 7 (see Fig. A.1).

As was previously shown (Hoskin, 1955; Hoskin & Levine, 1955), the dimen-
sionless force (per unit length) f* acting on one of the particles, can be found
by integrating the stress tensor over a closed surface enveloping that particle. In
the present case, we can choose to integrate over a closed surface consisting of a
cylinder with constant < 1y, and of unit (Debye) length, capped by two planer
circles. We can thus find the force per unit length acting on one of the cylinders.

The contribution to the integral from the end-caps vanishes, and hence:

. 2 b?(cosh ) — 1) 1 o 2_ oy 9 i
o= b/o {[(coshn—cose)2+2<<89> <8n> )] X (1 — coshncos 6)

+ 0% 9y sinh 77 sin 9}d9 (A.5)

20

For two cylinders of equal radii, it is convenient to integrate over the plane
n = 0. For cylinder-plane interaction, the integration was carried out over the
cylinder of n = /2. The free energy of two interacting cylinders with respect
to a state of infinite separation, F™*, was then evaluated by integrating the force
over the separation distance kh. We note that the free energy may also be
evaluated using a spatial integration, but this was found in previous studies to
yield numerically less accurate results in the corresponding case of interacting
spheres (Carnie et al., 1994; Stankovich & Carnie, 1996).

A.3 Results and discussion

For the sake of comparison with previous approximate solutions of the PB equa-
tion, we first consider a system of two weakly charged rods of equal radii. In this
limit the electrostatic potential is everywhere small (¢» < 1) and the use of the

linearized PB equation is valid for the single cylinder case. As previously shown
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Figure A.2: a) The reduced force per unit length for two interacting cylinders as a
function of separation distance, for equal radii k& = 1 and an equal constant charge
density o* = 0.001. The full and dashed lines correspond to the numerical and approx-
imate calculations respectively. The dots represent the points evaluated numerically.
b) The free energy, F*, as a function of separation distance for the same system as in

(a)-

by Brenner et al. (Brenner & Parsegian, 1974; Brenner & McQuarry, 1972), if
h > k7!, the force and interaction free energy between two cylinders can be
evaluated based on the linearized PB equation and using the superposition ap-
proximation. One then finds F(kR) = CKy(kR), where R = h + 2a is the
interaxial distance, K is the zero order modified Bessel function of the second
kind, and C' is a constant related to the charge densities on the cylinders. In Fig.
A.2 we compare the interaction free energy between two weakly charged cylinders
(ka1 = kay = 1, 0* = 0.001, ng ~ 0.065M), as calculated by the approximate
solution above, with the full numerical calculation of Eq. A.5, treating C' as an
adjustable parameter to be optimized. As expected, deviations are observed at
small inter-cylinder separations, xkh, in which regime the superposition approxi-
mation used by Brenner et al. (Brenner & Parsegian, 1974; Brenner & McQuarry,
1972) is no longer valid.

We now turn to the numerical solution of the nonlinear PB equation for the
interaction between two charged cylinders of equal radii and high charge densities.
The forces were calculated using Eq. A.5 and the free energy by integrating the
force. The interaction between two cylinders of equal radii and equal constant
surface charge densities was calculated for 0* = —8.4, and ka = 1 (see Fig. A.3).
For a ~1.2nm, corresponding to the radius of B-DNA, the latter condition implies
ng =~ 0.065M. Also shown in Fig. A.3 are results for the interaction between two
oppositely charged cylinders with o* = +8.4. We find that in the first case the
interaction is always repulsive, whereas in the second it is always attractive. Note

however that the repulsion (for a given h) is always weaker than the attraction.

These results can be explained as follows. When integrating the stress tensor
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Figure A.3: a) The free energy, F*, for two interacting cylinders as a function of
separation distance, for equal radii of ka = 1 and of equal (full line) and opposite
(dashed line) constant charge density of ox = +8.4. b) The reduced force per unit
length as a function of separation distance for the same systems as in (a).

over the plane of n = 0 the integrand assumes a simple form. It can be shown,
using symmetry considerations alone, that the force between equally charged
cylinders of equal radii (for which 9¢)/0n = 0 at the mid-plane) will always be re-
pulsive (Langmuir, 1938; Carnie et al., 1994; Stankovich & Carnie, 1996; Ohnishi
et al., 1960). Similarly, for two cylinders of equal radii but opposite charge density
(for which 0¢/00 = 0 and ¢ = 0 at the mid-plane) it will always be attractive
within the PB formulation. In the specific case studied, the difference between
the repulsion and attraction forces reflects the influence of the added salt. For
the equally charged cylinders (Ohnishi et al., 1960), the volume between the two
cylinders will contain a high concentration of ions of the opposite charge, while for
the oppositely charged cylinders this volume will be low in ionic concentration for
ions of both charges. This “counterion release” — the release of counterions from
the confined volume between cylinders due to the mutual charge compensation
of the two cylinders — is entropically favorable, contributing to the attraction. In
turn, this will also result in a stronger direct interaction between the oppositely
charged, unmasked rods. However, in general it might also be found in other
cases that confining the ions to the inter-cylinder volume in the equally charged

cylinders’ case will result in a strong repulsion at small distances.

We note that for very large charge densities or surface potentials (exceeding
o* ~ 7.0 in the systems considered), in particular for small separation distances
(say kh < 0.4), a well converged result for the potential was not always achieved.
The problem may be overcome, at least in some cases, by increasing the number
of grid points (also making the calculations lengthier in time), supplying a better
initial approximate guess for the potential, or solving the PB equation for the

potential difference between an initial guess and the true potential, (instead of
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Figure A.4: a) The free energy, F*, per unit length for two interacting cylinders as a
function of separation distance, for equal radii of ka = 1 and constant charge densities
o} =1 and 05 = —2. b) The reduced force as a function of separation distance for the
same systems as in (a).

solving for the potential itself).

When the two cylinders are oppositely charged, but not with the same surface
charge density, a minimum in both the force and free energy may appear (as is
also the case with charged spheres) (Carnie et al., 1994; Stankovich & Carnie,
1996; Palkar & Lenhoff, 1994). This can be seen in Fig. A.4, where the cylinders
(each with the same unit radius as before), have surface charge densities of o7 =1
and 03 = —2, respectively. Previous calculations pertaining to the interaction be-
tween spheres show that a similar minimum was found mainly due to an entropic
contribution (Palkar & Lenhoff, 1994). In the present case, this may be explained
as follows. At large enough distances, the approach of the two oppositely charged
cylinders enables counterion release, which is entropically favorable. When the
distance becomes small enough, the non-equal surface charge densities require
that some of the counterions remain in the inter-cylinder volume, resulting in
an entropically unfavorable compression of counterions which ultimately leads to
repulsion.

We have also calculated the interaction free energy as a function of the dis-
tance between a charged cylinder and an oppositely charged plane (n = 0). In Fig.
A.5a we show the interaction free energy between a cylinder of charge density

or = —6 and a planar surface of a constant electric potential ¢ = 2 (correspond-

ing to 0* ~ 2.3 when kh — 00). This system provides a reasonable model for
the interaction between a DNA rod and a lipid bilayer composed of cationic and
neutral lipids, where the charged lipids are freely diffusing (¢» = const), so as
to minimize the internal free energy. Upon approaching the plane the cylinder
induces a charge modulation in the planar surface (May & Ben-Shaul, 1997;

Harries, 1998). Fig. A.5b shows the charge density profile on the surface, as a
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Figure A.5: a) The interaction free energy, F'*, as a function of separation distance
for a cylinder of radius ka = 1 and constant charge density of 0 = —6, and a plane
of constant potential ¢)* = 2. b) The surface charge density on a plane of constant
potential (p* = 2) as a function of the distance from the projection of the cylinder
axis on the plane (ky). The constant cylinder-wall distance is kh = 0.4. The cylinder
radius is ka. = 1. The curves correspond to surface charge densities (top to bottom)
of o} = —6,—4,—3,—1,0 on the cylinder.

function of the distance (ky) from the projection on the plane of the rod axis,
for a fixed cylinder-plane separation (kh=0.4), for several different values of the
rod charge density 0. Not surprisingly, for high values of o7 opposite charges on
the “membrane” accumulate in the vicinity of the rod. On the other hand, for
low charge densities on the cylinder there is a reduction of charge density on the
plane near the cylinder. A qualitative explanation of this effect can be given as
follows. If the cylinder is very weakly charged (say neutral), it acts as a confining
wall with respect to the counterions in the gap between the rod and the plane.
This leads to an excess of counterion (osmotic) pressure, which can be partly
relieved by the escape of some counterions from the gap, and concomitantly, of
surface charges from this region. Indeed, the onset of this reduction is observed

close to the point where the charge densities on the plane and cylinder are equal.
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Appendix B

Numerical method for solving

the Poisson—Boltzmann Equation

In this appendix we outline the numerical proceedure we employed in solving
the PB equation with special boundary conditions corresponding to the case of
mobile membrane lipids.

In solving the full nonlinear Poisson-Boltzmann equation we follow previous
calculations of the electrostatic potential which employed Newton-Raphson iter-
ations of the Laplacian (Carnie et al., 1994; Stankovich & Carnie, 1996). The

problem is thus reduced to a sequence of linear elliptic equations of the form:

V24,41 — (cosh ¢, )14 = sinh ), — (cosh ¥, ). (B.1)

in which 1, is the electrostatic potential in the n-th iteration step. (The value of
the initial guess, 1)y, can be chosen arbitrarily, and was in general set to 1)y = 0 in
our calculations.) As n — 00, 1, converges to the solution of the full nonlinear
equation. In practice, less than 50 iterations ensure |1, — ¥, 1] < 1073 for all
grid points. In fact the two added terms represent a numerical gradient in the v
solution domain. When this term is very small ¢» becomes stable with respect to
further iterations, and the solution is self consistent and matches the PB solution.

The linear elliptic problem was solved in each iteration by using the publicly
available GENCOL routine (Houstis et al., 1985). This procedure can solve the
linear equation on an arbitrary (closed) domain using collocation with bi-cubic
Hermite functions. In most cases, a 40 x 40 evenly spaced grid was used, but
sometimes a variably spaced grid was also used.

For the lipid membrane, a nonlinear boundary condition (see Eq. 2.5) must
be solved, stating the relation between the surface charge density, the potential
¢ and the Lagrange multiplier A(¢)). This can be handled through the use of
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a second Newton-Raphson iteration on the boundary condition, in addition to
the one on the Laplacian. The two iterations can then proceed simultaneously.
Writing Eq. 2.5 in the form:

ef(w‘}'/\)

oy _

= (B.2)

1
___ B

the Newton-Raphson iteration for the boundary condition would result in:

81/)n+ 1
dy

For ¢'(1)) we chose a “modified” derivative:

- wn+lgl(wn) = g(wn) - wngl(wn) (B'3)

g(w) = —L— . (B.4)

In each iteration step the potential calculated in the previous step is used to
evaluate A using Eq. 2.3. This value of A is used to determine the boundary
condition for the lipid bilayer through Eq. B.3. It is then possible to solve Eq. B.1
for the current step, etc.

Once the potential is found, it now remains to evaluate the free energy of
the complex due to the charging and mixing processes. In principle, fo could be
evaluated using Eq. 2.2. For numerical purposes it is more convenient to use the

equivalent form:

2

fe = 1/ U—¢d5+i/ mpdS + " /(l@bsinhd)—cosh@/mtl)dv
Srrr 2a Sy v 2

kT 2 € 4:7TlB
l n B 1—n - B
TG /SV [77 " 6" (1 =mn = ¢] dS+n[plng + (1 —¢)In(l —$)[B.5)

where n = N¢ /D¢ is the number of lipid molecules in the unit cell. (The passage
from Eq. 2.2 to Eq. B.5 involves using: (i) the identity (Vi)? = V - (V) —
V21, (ii) Gauss theorem to convert the volume integral of V-(¢V1)) to a surface
integral over ¢V oc —¢m, (iii) the use of the PB equation, Eq. 2.4, for V2
and the Boltzmann distributions: ny = ngexp(F).) This procedure precludes
the need for using the derivatives of the potential (which are prone to a larger

numerical error).
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